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Abstract

Background: Ultrasound is the first-line imaging modality for detection and classification of thyroid nodules.
Certain characteristics observable by ultrasound have recently been identified that may indicate malignancy. This
retrospective cohort study was conducted to test the hypothesis that advanced thyroid carcinomas show
distinctive clinical and sonographic characteristics. Using a neural network model as proof of concept, nine clinical/
sonographic features served as input.

Methods: All 96 study enrollees had histologically confirmed thyroid carcinomas, categorized (n = 32, each) as
follows: group 1, advanced carcinoma (ADV) marked by local invasion or distant metastasis; group 2, non-advanced
papillary carcinoma (PTC); or group 3, non-advanced follicular carcinoma (FTC). Preoperative ultrasound profiles
were obtained via standardized protocols. The neural network had nine input neurons and one hidden layer.

Results: Mean age and the number of male patients in group 1 were significantly higher compared with groups 2
(p = 0.005) or 3 (p < 0.001). On ultrasound, tumors of larger volume and irregular shape were observed significantly
more often in group 1 compared with groups 2 (p < 0.001) or 3 (p ≤ 0.01). Network accuracy in discriminating
advanced vs. non-advanced tumors was 84.4% (95% confidence interval [CI]: 75.5–91), with positive and negative
predictive values of 87.1% (95% CI: 70.2–96.4) and 92.3% (95% CI: 83.0–97.5), respectively.

Conclusions: Our study has shown some evidence that advanced thyroid tumors demonstrate distinctive clinical
and sonographic characteristics. Further prospective investigations with larger numbers of patients and multicenter
design should be carried out to show whether a neural network incorporating these features may be an asset,
helping to classify malignancies of the thyroid gland.
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Background
Recent investigations have shown that tumor-specific
survival in patients with thyroid carcinomas is a function
of various parameters [1–4], such as tumor size, extra-
thyroidal invasion, and distant metastasis [5, 6]. Despite
the excellent 10-year overall survival (OS) rates reported
for papillary (97%) and follicular (89%) carcinomas [7],
invasion or distant spread of tumor does not bode well
prognostically [8]. There is also substantial heterogeneity
among individual tumors [9]. Genetic mutations and ag-
gressive histotypes weigh heavily on the clinical course
of thyroid cancer [10]. Results of a recently published
study indicate a significantly higher prevalence of spe-
cific genetic mutations in tumors with aggressive histo-
logic features; such mutations have been strongly linked
to extrathyroidal extension or metastatic disease [11].
The American Thyroid Association guidelines delin-

eate a comprehensive risk stratification system for pa-
tients with thyroid carcinomas [12], focusing on the
presence of structurally identifiable disease after initial
therapy. As stated, patients with thyroid neoplasms that
show gross extrathyroidal extension (T4) or distant me-
tastases (M1) are considered to have advanced thyroid
tumors and thus represent a high-risk group. A compel-
ling demonstration of the relationship between tumor
size and invasiveness or distant spread has similarly been
shown by others through multiple database (N = 18)
compilation [13].
Ultrasound examination of the thyroid gland is the first-

line imaging modality for detecting and classifying thyroid
nodules. Certain features readily reflect malignancy (odds
ratios of ~ 1.8–36) [14], but none are entirely specific.
Current investigations have yielded some evidence that
papillary (PTCs) and follicular (FTCs) carcinomas of the
thyroid may differ in ultrasound features. For instance,
FTCs generally surpass PTCs in terms of preoperative
tumor volume, whereas the taller-than-wide (TTW) sign
is typical of PTCs [15]. However, sonographic hallmarks
of advanced thyroid tumors have not been consistently de-
fined as yet. Recently, computer-aided diagnostic (CAD)
systems have been tested for accuracy in interpreting thy-
roid nodules [16]. Those driven by neural networks may
facilitate accurate disease classification by reducing com-
plex imaging information [17].
In the present investigation, using a neural network

model for proof of concept, we tested the hypothesis
that advanced thyroid carcinomas (vs. non-advanced,
differentiated tumors) exhibit distinctive features on
ultrasound. The parameters selected were identified by
cervical ultrasound examinations.

Materials and methods
This retrospective cohort study adhered to principles of
the Declaration of Helsinki and its subsequent

amendments as well as guidelines of the Institutional Re-
view Board (IRB) of the Friedrich-Alexander-University,
Erlangen/Nuremberg, Germany under auspices of the
Bavarian Hospital Act (Bayerisches Krankenhausgesetz
Art. 27 (4)). All patients granted general permission for
scientific use of their clinical data, supplying written in-
formed consent for anonymous data publication.
A total of 96 patients (30 men, 66 women) treated for

thyroid cancer during a 10-year period (2010–2020)
were enrolled for study, categorized (n = 32, each) as fol-
lows: group 1, advanced carcinoma (ADV: 13 men, 19
women); group 2, non-advanced PTC (6 men, 26
women); or group 3, non-advanced FTC (11 men, 21
women). ADV was defined as T4 or M1 disease stage ac-
cording to the 2017 Union for International Cancer
Control (UICC) TNM classification [18]. All T4 stages
were confirmed by histological examination. M1 stages
were assigned by imaging or histological procedures.
Non-advanced tumors corresponded with stages T1–3
and M0 (no distant metastases). Equivalent patient sam-
plings were achieved for groups 2 and 3 using a random
number generator. Demographic data of all patients se-
lected are presented in Table 1. Patients with incidental
papillary microcarcinomas were ineligible to participate.
The recruitment of the study subjects is shown in Fig. 1.
Each subject underwent thyroidectomy in one of two

surgical departments. All diagnoses of thyroid carcinoma
were confirmed histologically by board-certified patholo-
gists with expertise in thyroid neoplasms. Twenty-one of
the 32 patients in group 1 harbored distant metastases,
present as tracer-positive lesions on whole-body iodine
scans (lungs, 17; brain, 1) or identifiable by biopsy
(bones, 4). This group included patients with anaplastic
(ATCs, n = 7) and poorly differentiated (PDTCs, n = 3)
thyroid carcinomas of follicular (n = 9) or papillary type
(n = 13).
Ultrasound devices used for preoperative examinations

in all patients were equipped with high-resolution longi-
tudinal probes transmitting at a frequency of 10.0 MHz
(LOGIQ P6 Pro, GE Healthcare, Chicago, IL, USA). Col-
lected imaging data were stored in a picture archiving
and communication system (PACS) for later analysis by
two nuclear medicine specialists, each with more than

Table 1 Biographic data of the patients

ADV
(n = 32)

PTC
(n = 32)

FTC
(n = 32)

Total
(n = 96)

p-value

Mean agea [years] 62.8 48.9 54.5 55.4 = 0,005

SD 18.0 16.0 14.9 17.3

Range 28–93 16–82 23–87 16–93

m/fb [n] 13/19 6/26 11/21 30/66 < 0,001

ADV Advanced thyroid carcinoma (group 1), PTC Papillary thyroid carcinoma
(group 2), FTC Follicular thyroid carcinoma (group 3), SD Standard deviation, m
Male, f Female. aANOVA, bchi-square test
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10 years of experience reviewing more than 2000 thyroid
ultrasound examinations per year in this field.
The patients were examined in a supine position with

the neck slightly extended. In this position, the anterior
and lateral areas of the neck were freely accessible by
the ultrasound probe. First, the complete right lobe was
examined in transverse and longitudinal orientations.
Second, this procedure was identically applied to the left
lobe. Third, the isthmus was scanned in transverse and
longitudinal orientations.
Focal lesions of the thyroid gland were recorded in two

dimensions and stored to a PACS unit for later analysis.
Seven morphologic tumor criteria were assessed by the
examiners: (1) Volume, calculated as v = 0.5 * (dx * dy *
dz) using maximum lateral (dx), anteroposterior (dy), and
craniocaudal (dz) axial diameters and expressed in mL; (2)
Shape, whether round (dx = dy = dz. [± 10%]), oval (> 10%
disparity in axial diameters, except TTW), irregular (un-
dulating or complex shape), or TTW (anteroposterior

diameter > lateral diameter, craniocaudal diameter disre-
garded); (3) Contour (smooth, spiculated, or indistinctly
delineated); (4) Internal structure (homogeneous vs. non-
homogeneous); (5) Echogenicity, whether hypoechogenic
(less than adjacent tissue but not anechoic), hypoecho-
genic with cysts (anechoic components), hyperechogenic
(more than adjacent tissue), or hyperechogenic with cysts;
(6) Calcification (+/−); and (7) Focality (one or multiple
sites).
The ultrasound characteristics of the focal lesions (2)

to (7) were classified according to the criteria by Russ
et al. [19].

Neural network architecture
This study was intended to distinguish advanced thyroid
carcinoma from more limited forms (PTC, FTC), based
on neural network processing of sonographic traits. Only
one hidden layer was involved given the relative paucity
of data. Demographic (age and sex) and morphologic

Fig. 1 Flow chart showing the recruitment of the study individuals. The number in parenthesis represents the number of patients. (TC: thyroid
carcinoma, PTC: papillary thyroid carcinoma, FTC: follicular thyroid carcinoma, PDTC: poorly differentiated thyroid carcinoma, ATC: anaplastic
thyroid carcinoma, pT1–4: histological tumor stage, M1: distant metastasis, RS: random selection)
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characteristics (diameter [dx], shape, contour, structure,
echogenicity, calcifications, and focality) were selected
for input.
The network architecture is illustrated (Fig. 2). There

were nine input neurons fully connected to seven hidden
neurons. Output was shown as a vector indicating re-
spective tumor probabilities. In the hidden layer, a recti-
fied linear unit was invoked as activation function, the
output layer adopting a sigmoidal function and mean
squared error serving as loss function. To evaluate the
network, 81 of the 96 datasets were initially used for
training, reserving six for validation and nine for testing.
A leave-one-out cross-validation was then carried out.
The features of the implemented neural network are
listed in Table 2.

Statistical analysis
Depending on the nature of data distribution, analysis of
variance (ANOVA), Fisher’s, or chi-square test was ap-
plied to test differences among groups. Significance in
linear relations was gauged via Pearson’s correlation co-
efficient, engaging multinomial logistic regression for
multivariate relations. By default, confidence intervals of
binary variables involved binomial distributions. In
neural network performance analysis, the following met-
rics were generated: accuracy, sensitivity, specificity,
positive predictive value, negative predictive value, Fleiss
κ, Cohens κ, and F-score. All computations were driven

by standard software (MATLAB vR2012b; The Math-
Works Inc., Natick, MA, USA), setting significance
p < 0.05.

Results
Patient age and sex distributions
Mean age differed significantly (p = 0.005, ANOVA) in
the three tumor subsets (ADV, 62.8 ± 18.0 years; PTC,
48.9 ± 16.0 years; FTC, 54.5 ± 14.9 years), as did male/fe-
male distributions (ADV: 41% men, 59% women; PTC:
19% men, 81% women; FTC: 34% men, 66% women;
p < 0.001, chi-square test).

Ultrasonographic characteristics of tumor subsets
Average tumor size and volume obtained by ultrasound
studies differed significantly (p < 0.001, ANOVA) among
groups, determined as follows: ADV (size, 4.75 ± 2.07 cm;
volume, 30.30 ± 30.68 cm3); PTC (size, 1.95 ± 0.88 cm;
volume, 3.92 ± 8.15 cm3); and FTC (size, 3.58 ± 1.41 cm;
volume, 19.63 ± 23.98 cm3). Maximum tumor diameters
recorded during pathologic assessments averaged 5.45 ±
2.99 cm for ADVs, 1.72 ± 0.84 cm for PTCs, and 3.15 ±
1.59 cm for FTCs. In the entire dataset and in tumor
groups, maximum tumor diameter correlated significantly
with sonographic determinations of tumor size (r = 0.74;
p < 0.01) and volume (r = 0.75; p < 0.01) (see Table 3,
Fig. 3).

Fig. 2 Architecture of the neural network with nine input neurons and three outputs

Table 2 Features of the implemented neural network

Layer Shapea Number of Parameters Activation Function

Input layer (9,1) 0 –

Gated recurrent layer [(9,7), (7)] 210 ReLU

Gated recurrent layer [(9,3), (3)] 108 softmax

Output (3,1) 0 –

Shapea: the numbers represent the data vectors, ReLU Rectified linear unit
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Specific tumor characteristics (shape, contour, structure,
echogenicity, calcifications, and focality) by ultrasound
were recorded for each lesion. Feature distributions for
tumor subsets (ADV, PTC, or FTC) and related statistical
differences are shown in Table 4.
ADV, PTC, and FTC tumors were classified as EU-

TIRADS V lesions in 97, 84 and 56% of cases, respect-
ively and as EU-TIRADS IV lesions in 3, 16 and 44%, re-
spectively. The difference between EU-TIRADS V and

IV lesions was statistically significant (p < 0.001, chi-
square test).
ln(P(t = ADV) / P(t = PTC, FTC)) = − 2.8 + 0.6 shape +

1.2 con + 0.3 struc – 0.5 echo – 0.7 calc – 0.5 foc.
To avoid one-dimensional statistical analysis, multi-

nomial logistic regression was carried out using the fol-
lowing function:
Ultrasound parameters were thus used to calculate

ADV probabilities, both tumor shape and contour con-
stituting significant influences (p < 0.05). ADV probabil-
ity was 3.6-fold greater in tumors with irregular (vs.
round) shapes and increased by a factor of 3.3 if con-
tours were irregular rather than well-defined.

Neural network performance
In evaluating the neural network, 81 of the 96 patient
datasets were initially used for training, reserving six for
validation and nine for testing. Care was taken to ensure
that each group had the same number of data records
for the three tumor groups. Of the nine test datasets,
three ADVs were clearly identified by neural network
with > 90% probability, whereas PTCs were identified in
only one of three instances, two improperly classified as
FTCs. FTCs were identified in two of three instances,
the third designated PTC.
Once the network architecture was optimized, leave-

one-out validation was conducted to test its performance
in tumor classification. Ultimately, 84.4% (95% confi-
dence interval [CI]: 75.5–91) accuracy was achieved in
discriminating advanced carcinomas from the other
tumor subsets, with positive and negative predictive
values of 87.1% (95% CI: 70.2–96.4) and 92.3% (95% CI:
83.0–97.5), respectively. Performance data for all tumor
variants are shown in Table 5 and Table 6.

Discussion
Recent investigations have shown that patient prognosis
is comparatively worse in advanced (vs. limited) thyroid
cancers [8]. Herein, we examined demographic and
sonographic parameters of patients in T4 or M1 disease
stages. We also evaluated patients with limited thyroid
carcinomas (stage T3 or less, no distant metastases) for
purposes of comparison. To avoid sampling bias, candi-
dates with incidental papillary microcarcinomas were
deemed ineligible.
In our patient population, those with advanced disease

were on average older compared to others with less pro-
lific cancers. Male patients also accounted for a higher
proportion of subjects with advanced disease. Hwang et al.
have likewise identified male sex as an independent risk
factor for thyroid malignancy [20]. In addition, in clinico-
pathologic comparisons of various thyroid carcinomas, in-
creasing median ages among patients with anaplastic,

Table 3 Pearson correlation coefficients

ADV
(n = 32)

PTC
(n = 32)

FTC
(n = 32)

Total
(n = 96)

Histological diameter – tumor volume

r 0.59 0.62 0.67 0.75

p < 0.001 < 0.001 < 0.001 < 0.001

histological diameter – tumor length

r 0.67 0.64 0.77 0.74

p < 0.001 < 0.001 < 0.001 < 0.001

ADV Advanced thyroid carcinoma (group 1), PTC Papillary thyroid carcinoma
(group 2), FTC Follicular thyroid carcinoma (group 3). r: correlation coefficient,
p p-value

Fig. 3 Correlation of histological diameter. a with sonographical
length. b with sonographical volumetry
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poorly differentiated, and differentiated carcinomas have
been recorded [5, 21].
Regarding sonographic parameters, we found that

tumor volumes in ADV group members significantly
surpassed those of the limited disease groups. Overall,
tumor size determined by ultrasound correlated well
with measurements obtained during pathologic examin-
ation, although multinominal logistic regression analysis
revealed a more than three-fold rise in the incidence of

advanced (vs. limited) disease for tumors with irregular
shapes and contours.
The impact of tumor size on risk of T4 disease stage

or distant metastases has already been explored in an
earlier study [13]. These authors found that in differenti-
ated thyroid carcinomas, the risk of local invasion (T4)
or distant spread (M1) increases gradually along with
tumor size. Such increases appeared linear for PTCs
(without threshold effect) and non-linear for FTCs

Table 4 Number of ultrasound characteristics (percent in brackets) in the study groups

Ultrasound
feature

ADV
(n = 32)

PTC
(n = 32)

FTC
(n = 32)

p-values

ADV vs. PTC ADV vs. FTC PTC vs. FTC

Shapea 0.004 0.010 0.002

Round 4 (13) 10 (31) 6 (19)

Oval 4 (13) 8 (25) 23 (72)

Irregular 24 (75) 9 (28) 2 (6)

TTW 0 (0) 4 (13) 1 (3)

Contoura 0.131 0.012 0.318

Well-defined 4 (13) 10 (31) 14 (44)

Ill-defined 28 (88) 22 (69) 18 (56)

Structurea 0.724 0.753 0.509

Homogeneous 5 (16) 4 (13) 7 (22)

Inhomogeneous 27 (84) 28 (88) 25 (78)

Echogenicitya 0.192 0.336 0.704

Hypoechogenic 26 (81) 21 (66) 21 (66)

Hyperechogenic 5 (16) 6 (19) 8 (25)

Cystic 1 (3) 5 (16) 3 (9)

Calcificationsa 0.044 0.572 0.005

Present 10 (31) 19 (59) 7 (22)

Not present 22 (69) 13 (41) 25 (78)

Focalitya 0.184 0.613 0.026

Unifocal 29 (91) 24 (75) 31 (97)

Multifocal 3 (9) 8 (25) 1 (3)

ADV Advanced thyroid carcinoma (group 1), PTC Papillary thyroid carcinoma (group 2), FTC Follicular thyroid carcinoma (group 3). achi-square test

Table 5 Performance data of the neural network model for the classification of the study groups

Total
(n = 96)

ADV
(n = 32)

PTC
(n = 32)

FTC
(n = 32)

Accuracy (95% CI) 84.4 (75.5–91.0)

Sensitivity (95% CI) 84.4 (67.2–94.7) 87.5 (71.0–96.5) 78.1 (60.0–90.7)

Specificity (95% CI) 93.8 (84.8–98.3) 92.2 (82.7–97.4) 90.6 (79.7–96.5)

Positive predictive value (95% CI) 87.1 (70.2–96.4) 84.9 (68.1–94.9) 80.6 (62.5–92.6)

Negative predictive value (95% CI) 92.3 (83.0–97.5) 93.6 (84.5–98.2) 89.2 (79.1–95.6)

Fleiss Kappa (95% CI) 0.56 (0.55–0.57)

F-score 0.84

ADV Advanced thyroid carcinoma (group 1), PTC Papillary thyroid carcinoma (group 2), FTC: follicular thyroid carcinoma (group 3), CI: confidence interval
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beyond 4 cm in diameter. In terms of distant metastases,
no size thresholds were evident for PTCs or FTCs, al-
though the probability of distant metastases increased pro-
gressively with size in undifferentiated thyroid cancers.
The mean tumor diameter we determined for all types

of ADVs was ~ 5.4 cm. Subgroup analysis further re-
vealed mean tumor diameters of 1.7 cm and 3.1 cm for
PTCs and FTCs, respectively. These findings imply that
in the context of advanced thyroid cancers, no threshold
values are definable for culpable primary tumors.
In our patients, irregularly shaped tumors were statis-

tically more frequent in those with advanced (vs. limited)
disease. A large-scale meta-analysis has also shown that
irregular margins (among other features) are highly pre-
dictive of malignancy [14]. Unfortunately, the ultrasound
features of advanced or non-advanced tumors were not
addressed, particularly ramifications of round, oval, or ir-
regular sonographic tumor shapes.
Hahn et al. have reported that shapes and margins of

thyroid tumors on ultrasound may reflect levels of biologic
aggression [22]. For instance, oval-to-round appearances
and well-defined margins were detected more often in
poorly differentiated carcinomas than in anaplastic tu-
mors. These revelations perhaps support the significant
disparities in irregular tumor shapes and margins exhib-
ited by advanced and non-advanced tumors in the course
of our multinomial logistic regression analysis.
Our investigation was not designed as an observer

study. Therefore, we are unable to provide data on the
intra- and interobserver variances of the ultrasound find-
ings. Ultrasound examinations were carried out, and the
results were classified by examiners with high experience
in this field. We assume that this approach was feasible
to keep the variances low.
The structure of neural networks, as well as training and

validation processes, has been extensively described by
Lee et al. [17]. They contend that this technology may
help integrate the diagnostic intricacies of complex path-
ologies. Reliance on neural networks for quantitative data
processing may indeed provide greater diagnostic accuracy
in patients with suspected advanced cancerous lesions.

We used a two-step approach to evaluate our network.
Training and validation were done alternately to ensure
sufficient generalizability during training, testing predict-
ive power on a hold-out dataset. Training was halted when
the loss of function converged. Our proof-of-concept net-
work led to correct classification in most patients (84%)
with ADVs. Jeong et al. have evaluated a commercially
available CAD system for ultrasonographic recognition of
thyroid cancers [16], reaping a positive predictive value of
81.3%. However, these commercially available artificial
intelligence systems were devoid of clinical input, re-
stricted to ultrasound parameters only [23].
As a retrospective study, Li et al. recently examined

the diagnostic performance of a deep convolutional net-
work model to differentiate malignant and benign thy-
roid nodules based on ultrasound imaging data [24]. The
observed accuracy of this model in correctly classifying
respective lesions was also quite high (> 85%). Our
smaller sampling achieved similar accuracy (84.4%) in
discriminating advanced from limited thyroid cancers,
thus indicating the high potential of adjunctive neural
network learning methods in imaging analysis. Unlike
the model of Li et al., our approach allows the imple-
mentation of a freely accessible online data input tool.
Because voluminous data is not essential, our application
is a practical one.
Besides the neural network that was used in our study

to classify thyroid nodules, several other approaches
using computer-aided diagnosis systems (CAD) have
been evaluated. Wei et al. [25] compared the diagnostic
value of S-Detect, a CAD system used to differentiate
benign and malignant thyroid nodules by radiologists
with different levels of experience. They reported that S-
Detect had an accuracy, sensitivity, specificity, positive
predictive value, and negative predictive value of 77.0,
91.3, 65.2, 68.3, and 90.1%, respectively. We could dem-
onstrate a higher efficiency of our neural network ap-
proach. Furthermore, in contrast to our study, in Wei
et al.’s study not all of the histopathological results were
obtained by surgical resection; this might have further
restricted the study results. Additionally, Kim et al.

Table 6 Performance data of the neural network model for the classification of advanced and non-advanced thyroid carcinomas

Total
(n = 96)

ADV
(n = 32)

Non-ADV
(n = 64)

Accuracy (95% CI) 84.4 (75.5–91.0)

Sensitivity (95% CI) 84.4 (67.2–94.7) 82.8 (71.3–91.1)

Specificity (95% CI) 93.8 (84.8–98.3) 83.1 (71.7–91.2)

Positive predictive value (95% CI) 87.1 (70.2–96.4) 82.8 (71.3–91.1)

Negative predictive value (95% CI) 92.3 (83.0–97.5) 95.3 (88.4–98.7)

Cohens Kappa (95% CI) 0.84 (71.2–97.5)

F-score 0.84

ADV Advanced thyroid carcinoma (group 1), Non-ADV Non-advanced thyroid carcinoma (group 2 and 3), CI Confidence interval
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reported that S-Detect has a limitation in the evaluation
of nodule calcifications, restricting its use in the evalu-
ation of calcified thyroid nodules [26]. Xia et al. evalu-
ated the use of S-Detect in 171 patients with 180 thyroid
lesions [27]. They found that the CAD system presented
a higher sensitivity but lower specificity than an experi-
enced radiologist (90.5% vs. 81.1 and 41.2% vs. 83.5%).
The radiologist also had a higher accuracy compared to
the CAD system (82.2% vs. 67.2%) for diagnosing malig-
nant thyroid nodules. The authors concluded that S-
Detect had a lower specificity and accuracy than the ex-
perienced radiologist in identifying papillary thyroid car-
cinomas and also maintained a relatively lower
performance than the experienced radiologist in identify-
ing follicular thyroid carcinomas. Unlike S-Detect, our
presented neural network approach allows the imple-
mentation of a freely accessible online data input tool
that enables simple non-commercial use in the future.
There are several limitations to our study, the first be-

ing its retrospective design. We included only those thy-
roid tumors from our database that were identifiably
encoded. Another issue is that only patients surgically
treated at our facility with available pathologic reports
were considered. Various protocols used were also clin-
ically based and non-standardized, and the small number
of patients involved who were not perfectly matched
may have introduced significant outcome bias. Our in-
vestigation was performed as a single center retrospect-
ive study. One should be aware that this design might
have reduced the statistical power of our results. A bias
regarding the parameter tumor size as input function of
the neural network cannot be excluded in our data.
However, this parameter alone is not decisive as to
whether the neural network classifies a tumor as ad-
vanced or not. In the advanced tumor group, 21 of 32
patients presented with distant metastases and were
therefore included in the advanced group. Finally, we
used a concise rather than comprehensive neural net-
work model for analysis, requiring some simplification
of output functions.

Conclusion
From our study, we have found some evidence that ad-
vanced thyroid tumors show distinctive clinical and
sonographic characteristics. Further prospective investi-
gations with larger numbers of patients and multicenter
design should be carried out to show whether a neural
network incorporating these features may be an asset,
helping to classify malignancies of the thyroid gland.
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