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Abstract

Thyroid hormones (TH) are essential for the development of the human brain, growth and cellular metabolism.
Investigation of TH transporters became one of the emerging fields in thyroid research after the discovery of
inactivating mutations in the Monocarboxylate transporter 8 (MCT8), which was found to be highly specific for TH
transport. However, additional transmembrane transporters are also very important for TH uptake and efflux in
different cell types. They transport TH as secondary substrates and include the aromatic amino acid transporting
MCT10, the organic anion transporting polypeptides (e.g. OATP1C1, OATPT1A2, OPTP1A4) and the large neutral
amino acid transporters (LAT1 and LAT2). These TH transporters characteristically possess 12 transmembrane
spanners but due to the strong differing sequences between the three transporter families we assume an identical
conformation is not very likely. In contrast to the others, the LAT family members form a heterodimer with the
escort protein 4F2hc/CD98. A comparison of sequence proportions, locations and types of functional sensitive
features for TH transport discovered by mutations, revealed that transport sensitive charged residues occur as
conserved amino acids only within each family of the transporter types but not in all putative TH transporters.
Based on the lack of highly conserved sensitive charged residues throughout the three transporter families as a
common counterpart for the amino acid moiety of the substrates, we conclude that the molecular transport
mechanism is likely organized either a) by different molecular determinants in the divergent transporter types or b)
the counterparts for the substrates’ amino acid moiety at the transporter are not any charged side chains but
other proton acceptors or donators. However, positions of transport sensitive residues coincide at transmembrane
helix 8 in the TH transporter MCT8, OATP1C1 and another amino acid transporter, the L-cystine and L-glutamate
exchanger xCT, which is highly homologous to LAT1 and LAT2. Here we review the data available and compare
similarities and differences between these primary and secondary TH transporters regarding sequences, topology,
potential structures, trafficking to the plasma membrane, molecular features and locations of transport sensitive
functionalities. Thereby, we focus on TH transporters occurring in the blood-brain barrier.

Introduction

Investigation of thyroid hormone (TH) transporters has
become one of the emerging fields in thyroid research
during the last few years. Molecular studies of TH trans-
porters were enforced after the discovery of inactivating
mutations in the TH transporter MCT8 (Monocarboxy-
late transporter 8). These mutations cause the Allan-
Herndon-Dudley syndrome (AHDS) [1], which is an X-
linked mental retardation. The affected patients show
normal TSH (Thyroid-stimulating hormone, thyrotro-
pin) but elevated T3 (3,3’,5-triiodo-L-thyronine) and
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decreased T, (3,3’,5,5"-tetraiodo-L-thyronine) serum
levels [2-6].

TH are essential for the development of the human
brain, growth and cellular metabolism. A dysfunction in
the availability of TH during early embryonic develop-
ment leads to neurological deficiency [7]. In the brain,
TH are important e.g. for the timely migration of neu-
rons, formation of synaptic contacts and myelination
[8]. Neurons are the major target cells for T3 during
brain development. According to current concepts, the
prohormone T, enters the neighbouring astrocyte and
deiodinase 2 converts T, to the active form T3 which is
then transported into neurons by MCT8 [9].

An impaired uptake of T3 in MCT8-expressing central
neurons could explain the neurological deficits found in
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AHDS patients [1,3]. Surprisingly, the corresponding
Mct8-deficient mice show the endocrine changes only,
but not the neurological phenotype, observed in affected
humans. Symptoms of hyperthyroidism in the peripheral
tissues in combination with symptoms of hypothyroid-
ism in the central nervous system were shown in mice.
The brain uptake of exogenous T3 is also markedly
reduced, whereas the uptake of T, shows 50% transport
activity in comparison to the wild type mice [10-12].

On the basis of these data it was assumed that addi-
tional TH transporters (“secondary TH transporters”) or
differences in their expression patterns and substrate
specificity can compensate the loss of Mct8 in mice
[13]. Finally, it became obvious that secondary TH
transporters are also very important for TH uptake and
efflux in different cells types. Whereas the primary TH
transporter MCTS8 is currently known to be highly spe-
cific for TH only [14], the secondary TH transporters
are also able to transport different kinds of amino acids
and comprise the aromatic amino acid transporting
MCT10, the organic anion transporting polypeptide
transporters (e.g. OATP1C1, OATP1A2, OPTP1A4),
and the large neutral amino acid transporters (LAT1
and LAT?2).

Another amino acid transporter, the sodium indepen-
dent exchanger of L-cystine and L-glutamate (xCT),
which can even transport negatively charged amino
acids, is also considered here, since xCT shows close
similarities to LAT transporters regarding molecular fea-
tures and plasma membrane trafficking mechanism.

Therefore, we here review the data available on simila-
rities and differences between the primary and second-
ary TH transporters regarding sequence, trafficking to
the plasma membrane, molecular features, predicted
membrane topologies, potential structures and function-
alities. Thereby, our focus here is on TH transporters
occurring in the blood-brain barrier (BBB).

Expression patterns of primary and secondary TH
transporters

It was shown in the brain that MCT8 expression in neu-
rons is essential for neuronal uptake of T3[15]. The
reduced brain uptake of T3 and T, in Mct8-deficient
mice suggests that MCT8 transports TH across the
BBB. Roberts et al. could show an expression of MCT8
in cerebral microvessels and demonstrated the expres-
sion of MCTS8 at the BBB in the human, mouse, and rat
brain [13]. These expression profiles support the sugges-
tion that MCT8 does not only play a major role in TH
action in the brain in humans and rodents but also in
the uptake of TH in the brain across the BBB in
humans. MCT8 is also expressed in the thyroid, liver,
testis, and in the skeletal muscle (table 1). Another
member of the MCT family which transports TH,
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MCT10, shows overlapping expression patterns with
MCTS, except that MCT10 has not been detected in the
thyroid, brain and testis (table 1).

OATPIC1 like MCTS8 is expressed at the BBB in
mouse and rat, but to a much lesser extent at the
human BBB [13]. The strong expression of OATP1C1 in
the rodent but less so in the human BBB could explain
why Mct8-deficient mice do not show the neurological
changes found in AHDS patients. The OATP family
members OATP1A2 and OATP1A4 are also expressed
in the brain and show transport of TH (table 1) [16].

The TH transporters LAT1 and LAT2 are expressed
in various tissues, e.g. in luminal and abluminal mem-
branes of brain capillary endothelial cells, placenta, and
intestine, whereas LAT1 also shows high expression
levels in tumour cells (table 1). Both transporters are
expressed at the BBB, whereby LAT1 expression is
higher than LAT2 [17] (figure 1). LAT1 and LAT2 form
a heterodimer with the escort protein, 4F2hc (4F2 heavy
chain, CD98), which is ubiquitously expressed, e.g. in
tumours, brain, kidney, intestine, and placenta (table 1)
[18,19].

The amino acid transporter xCT is also expressed in
the brain (table 1) [20,21] and it has been suggested that
xCT is up-regulated in glial cells upon the oxidative
stress and plays an essential role to protect neurons
against oxidative stress [22].

Topology and structures of TH transporters

The TH transporters considered here show a common
topology by comprising 12 transmembrane helices
(TMHs) while the N- and C-terminal tails are located
intracellularly, like a vast number of other known trans-
porters of the major facilitator superfamily (MES) (see
transporter database http://www.tcdb.org/superfamily.
php). The MES is an evolutionary diverse superfamily
that includes over 10,000 sequenced members which
catalyze uniport, symport and antiport transport
mechanisms.

MCT8 and MCT10 belong to the MFS subgroup of
Monocarboxylate transporter family. Since the monocar-
boxylate transport for the members MCT1-4 is proton
linked, these MCT transporters are not further consid-
ered here.

The OATP family members Oatpla4 and Oatpla5
were the first cloned TH transporters [23]. Although the
OATP family also belongs to the MES in terms of
sequence similarity it is more distant from MCT8 and
MCT10.

LAT1 and LAT2 are even more distant to MCTS8.
They are members of the Amino Acid-Polyamine-
Organocation (APC) superfamily and transport
sodium-independent large neutral amino acids such
as phenylalanine, tyrosine, leucine, arginine and
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Table 1 Tissue distribution of TH transporters from the MCT (MCT8 and MCT10), OATP (OATP1C1, OATP1A2,
OATP1A4), and LAT (LAT1 and LAT2) family and of the xCT transporter and the escort protein 4F2hc.

Gene Protein Localization References
SLC16A2  MCT8 liver, kidney, brain, heart, skeletal muscle, placenta, thyroid, testis [14,15,33,64-68]
SLC16A10 MCT10 intestine, kidney, liver, skeletal muscle, heart, placenta, pancreas [67-69]
SLCO1CT  OATPICI brain, testis, cochlea [38,39]
SLCOTA2  OATP1A2 brain, liver, kidney, intestine [70-72]
SLCOTA4 OATP1A4 liver, brain, testis, ovaries, retina [23,70,73]
SLC7A5 LAT1 multiple (tumours, brain, spleen, placenta, testis, colon, kidney, intestine, stomach, ovary, thymus, not [74-81]
liver)

SLC7A8 LAT2 kidney, placenta, brain, intestine, testis, ovary, liver, heart, skeletal muscle, lung, stomach [74,79-83]
SLC7A11  xCT brain, kidney, activated macrophages, duodenum [20,84,85]
Gene Escort Localization Reference

protein
SLC3A2 4F2hc (CD98)  multiple (tumours, brain, intestine, kidney, liver, skeletal muscle, ovary, placenta, testis...) [74]
tryptophan from extracellular fluids into the cell, There is a lack of detailed experimental structural

when associated with SLC3A2/4F2hc. The glutamate information for all TH transmembrane transporters.
transporting xCT also belongs to the APC family and  Therefore, the crystal structure of the Glycerol-3-phos-
shows high similarities to the LATs on the molecular  phate transporter (GlpT, PDB code 1PW4 [24]), another
level. member of the MSF superfamily, has been used as a

Blood-Brain
Blood Barrier Brain

Astrocytes\

MCTS8
T,
T3 OATP1C1
T3
T, LAT1
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/

Figure 1 lllustration of the TH transporters expressed at the blood-brain barrier (BBB). The TH transporters MCT8, OATP1C1, LAT1, and
LAT2 are expressed at the BBB, whereby LAT2 shows lower expression levels than the LAT1. The prohormone T, enters the astrocyte and is
converted to the active form T3 by an outer ring deiodination. According to current concepts, Ts enters the neurons by the TH transporter MCT8.
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structural template for homology models for MCT1
[25], MCT8 [26], and OATP1C1 [27]. Although it
has been suggested that the substrate translocation
at GIpT is associated with conformational changes by
an alternating access mechanism with a rocker-switch
type of movement of the N- and C-terminal domains
[23,25], details for the particular TH transporters are
not known yet.

Among the numerous X-ray structures of bacterial
transporters the high-resolution three-dimensional
structures of another MFS type, the lactose H" sympor-
ter (LacY) [28,29], also shows the closest structural
homology to GlpT. The crystal structure of an APC
family transporter, the proton-coupled broad-specificity
amino acid transporter apo-ApcT [30], shows the 12
TMHs in an inward-facing apo state. It shows a struc-
tural similarity to the 12 TMHs within the crystal struc-
ture of a bacterial homologue for neurotransmitter
transporters, the sodium-dependent leucine transporter
(LeuT) from Aquifex aeolicus[31]. The ion independent
GlpT structure possesses a single binding site for the
substrate. The other available structures from MSF and
APC families are from proton- or ion-coupled transpor-
ters and contain additional binding sites for the sym-
ported protons or ions.

Substrate spectra of TH transporters show a
broad range

So far cellular uptake of TH has been shown for the
monocarboxylate transporters MCT8 and MCT10, the
organic anion transporting polypeptides, e.g. OATP1ClI,
OATP1A2, and OATP1A4, and the heterodimeric
amino acid transporters LAT1 and LAT2 [16].

MCT8 was identified as the first specific transporter of
T, and T3 and was found to transport their inactive TH
metabolites such as rT3 (3,3’,5" -triiodo-L-thyronine) and
3,3'-T5 (3,3"-diiodo-L-thyronine) [14]. Thereby, the
transport of T3 is higher than of T, or rTj, respectively
(T3 > T4 > rT3 ~ 3,3'-T,) (table 2) [14]. In order to be

Table 2 Uptake of iodothyronines by TH transporters
expressed at the blood-brain barrier. The levels of TH
transport are indicated as follows: +++ high uptake rate,
++ modest uptake rate, and + low uptake rate; n.d., not
determined.

Protein lodothyronines Species References

3,3- Ts s Ta

T2
MCT8 +/+  4+++/++ +/+ ++/+ human/rat [14,86]
+ + +
OATP1CT  nd. + +++ +++ human, rat, [37-39]
mouse

LAT1 +++ ++ ++ +  human [43]
LAT2 +++ ++ ++ mouse [43]
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transported by human MCTS8, substrates require at least
one iodine atom per aromatic ring preferably at their 3
and 3" position, respectively [26]. Neither thyronamines
(except 3-iodothyronamine [32]), decarboxylated meta-
bolites of iodothyronines, nor TH derivatives lacking
both chiral center and amino group, are substrates for
MCTS8 [26,32]. MCT10 was first identified as a T-type
transporter for aromatic amino acids [33] and later
Friesema et al. showed that MCT10 is at least as active
for TH transport as MCT8 [34].

The TH transporting OATP family members show a
broader substrate spectrum, e.g. in addition to TH they
transport bile acids, steroid hormones [35] and drugs
[36]. Functional transport analysis of OATP1C1 revealed
that T, and rT5 are high affinity substrates of OATP1CI,
whereas the specific uptake of T3 is about 5-fold less
than that of T4 and rTy (T4 ~ T3 > T3) [37-39] (table 2).
It has been suggested that OATP1C1 is primarily respon-
sible for T, uptake from the blood into the brain across
the BBB where it is locally converted to the active T3,
which is in turn transported into neurons by MCT8 [40].

LAT1 and LAT2 transport large neutral amino acids
and amino acid related compounds, whereas LAT2 also
transports small amino acids [41,42]. Functional analysis
of LAT1 could demonstrate the iodothyronine uptake,
which decreased in the order 3,3'-T5 > rT3 ~ T3 > T,
Smaller increments in iodothyronine uptake were noted
in transport mediated by LAT2 (table 2) [43].

The amino acid transporter xCT is responsible for the
cystine transport through the plasma membrane [44,45].
It mediates an amino acid exchange and prefers cystine
and glutamate as its substrates [46].

Similarities and Differences of TH transporters on
Molecular Level

Sequences

A comparison of the different sequence proportions and
features among the discussed TH transporters is shown
in figure 2. Sequence lengths, proportions and known
sensitive features of transport differ between the three
TH transporter families (MCT, OATP, and LAT). Due
to the very high sequence similarity to the LAT
sequences, we also considered the xCT sequences here.

Sequence alignment reveals that the MCT8 and espe-
cially the human MCT8 contain a very large N-terminal
tail, for which the function is still unknown [47]. Both
TH transporting MCT family members, MCT8 and its
close homolog MCT10, do not contain extracellular gly-
cosylation sites [34].

Other secondary TH transporters such as those from
the OATP family are less similar. They show larger
extracellular loops (EL) with numerous conserved
cysteines in EL2, EL5 and EL6 (yellow bars in figure 2)
that are probably disulfide bridged. Moreover, chances
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Figure 2 Comparison of sequence proportions and functional sensitive features of primary and secondary TH transporters. Sequence
scheme of TH transporters expressed at the blood-brain barrier (BBB) is aligned according to the sequences of common 12 transmembrane
spanners (pale grey boxes). Sequence lengths, proportions and known sensitive features of transport differ between the three TH transporter
families (MCT, OATP, and LAT). The xCT sequences are very homologous to LATs and are therefore added. The human MCT8 possesses a very
large N-terminal tail at the intracellular portion. Intra- and extracellularly conserved cysteines are marked in yellow bars. N-glycosylation sites of
the OATP family are conserved at large extracellular loops EL2 and EL5 (magenta bars). The proven disulfide bridge formed by the LAT and xCT
family to the escort protein 4F2hc are conserved in the EL2 (C165-LAT1_human [49] or C158-xCT_human [50] marked by red dot * at yellow
bar). Sensitive positions for TH transport identified by mutations are highlighted: MCT8_human: R445A(# blue bar, TMH8 [26]) and D498A (& red
bar, TMH10 [26]), the sensitive arginine and aspartate are conserved at the MCT8 and MCT10 group; Oatp1cl_rat: W277A and W278A (§ green
bars, TMH6 [271), G400A and G410A (® and vgreen bars, TMH8 [30]), R60TA (// blue bar, TMH11 [27]); OATPTA2_human: 113T (¢ N-terminal tail
[63]), R168C (4 blue bar, TMH4 [58]), E172D (0 red bar, TMH4 [63]). The isoleucine at position 13 (green bar, N-terminal tail) is only conserved at
the OATP1A2 group, while the sensitive tryptophan (green bars), arginines (blue bars) and glutamate (red bar) are conserved within the OATP
family. At the human xCT may lie close to the substrate binding site H110 (+ blue bar [21]) and T112 (© green bar [21]) in ILT and the C327 (~
yellow bar [62]) at TMH8. The accession numbers of these proteins are NM_006517.3 (MCT8_human), NM_009197.2 (MCT8_mouse), NM_147216.1
(MCT8_rat), NM_018593.4 (MCT10_human), NM_001114332.1 (MCT10_mouse), Q91Y77 (MCT10_rat), NM_0174354 (OATP1C1_human),
NM_021471.2 (OATP1C1_mouse), NM_053441.1 (OATP1C1_rat), NM_134431.3 (OATP1A2_human), NM_174654.2 (OATP1A2_bovine), AF205071.1
(OATP1A4_human), NM_030687.1 (OATP1A4_mouse), NM_131906.1 (OATP1A4_rat), BC039692.2 (LAT1_human), BC026131.1 (LAT1_mouse),
CH473972.1 (LAT1_rat), NM_001082120.1 (LAT1_rabbit), BC052250.1 (LAT2_human), BC059004.1 (LAT2_mouse), NM_053442.1 (LAT2_rat),
NM_001082682.1 (LAT2_rabbit), NM_014331.3 (xCT_human), NM_011990.2 (xCT_mouse), NM_001107673.2 (xCT_rat).
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are that several conserved glycosylation sites in EL2 and
EL5 are responsible for appropriate traffic of this trans-
porter type towards the cell membrane (magenta bars in
figure 2).

The transporters that belong to the APC superfamily,
such as LAT1/2 and xCT, are even more evolutionary
distant from MCT8. Like the other TH transporters
they possess 12 transmembrane o-helical spanners but
for suitable membrane expression they need the one
helix transmembrane spanner escort protein 4F2hc
[48-50]. This transporter type lacks any glycosylation
site since the glycosylation sites are only comprised at
the large extracellular portion of 4F2hc. Thus, both
transporter types (LAT and xCT) are in fact tightly
associated by a 13th TMH that is provided by the escort
protein 4F2hc. This odd number of transmembrane seg-
ments might be one reason why the potential intracellu-
lar loop 1 (IL1) between TMH2 and TMH3 is organized
as a re-entrant loop in the xCT. In a detailed experi-
mental study elucidating the topology of xCT [21] it
was shown that histidin 110 in IL1 (marked + in figure
2) and threonin 112 (marked ° in figure 2) are spatially
located in human xCT in such a way that they are
accessible from the extracellular side. At the xCT, a part
of IL1 is interposed between the transmembrane seg-
ments in such a manner that the two residues are acces-
sible from the extracellular side.

The number and properties of residues at IL1 are
highly conserved among xCT and LAT1/2. Moreover, at
the corresponding amino acid positions, where extracel-
lular accessibility was shown in xCT (H110 and T112),
the hydrophilic residues aspartate and serine appear in
LATI1 and LAT?2 respectively (red and grey bars at IL1
in figure 2). Therefore it is feasible that the IL1 may
also functions as a re-entrant loop in LAT1 and LAT2.

Escort proteins

Not only differences in the transport of TH within TH
transporters are known, but the trafficking mechanisms
of these transporter proteins towards the plasma mem-
brane differ also. Trafficking of integral membrane pro-
teins to the plasma membrane is mediated by the
secretory pathway. At the beginning, proteins are inte-
grated into the membrane of the endoplasmatic reticu-
lum and are then delivered in the membrane of vesicles
through the individual compartments of the Golgi appa-
ratus to the plasma membrane. MCTS8, MCT10, LAT]I,
and LAT2 are non-glycosylated proteins, whereas the
OATPs possess potential glycosylation sites [51] (figure
2). Normally, glycosylations are essential for trafficking
whereby the trafficking mechanisms for the two TH
transporters from the MCT and the LAT families are
organized differently. In the case of MCT8 and MCT10
it is speculated that the large N-terminal tail might
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contain features that facilitate trafficking towards the
membrane. Other transporters of the MCT family such
as MCT1 and MCT4, which do not transport TH but
other substrates e.g. lactate, pyruvate and ketone bodies
[52], require an association with the escort protein
CD147 for efficient cell surface expression [53] instead.
In contrast to the TH transporting MCT family mem-
bers, the two LAT transporters also need an escort pro-
tein for efficient cell surface translocation, the 4F2hc
[18,19].

The two escort proteins 4F2hc and CD147 share a
common topology. The amino-terminus of 4F2hc is
located intracellularly, whereas the very large extracellu-
lar carboxy-terminus [48] contains four potential glyco-
sylation sites [54]. Thus, 4F2hc is a multifunctional type
II membrane glycoprotein [55]. In the heterodimer com-
plex between LAT1/2 and 4F2hc the 12 helix transport
protein is called the light chain and the glycosylated
escort protein 4F2hc is called the heavy chain. The
heavy chain can form heterodimers with six different
non-glycosylated light chains like LAT1, LAT2, y
+LAT1, y+LAT2, ascl, and xCT [48].

Both subunits of the heterodimer between the L-type
amino acid transporters build a covalent bond via a dis-
ulfide bridge through the cysteine residue 109 of the
extracellular region of human 4F2hc and the cysteine
residue 165 in the second extracellular loop localized
between the TMH3 and TMH4 of rat Latl (red dot and
* in figure 2) [48,49]. This cysteine residue is conserved
in all sequences of LAT1, LAT2 and also in all xCT
sequences in EL2 (yellow bar in figure 2).

Although these two subunits of the heterodimeric
transporters are joined by the highly conserved disulfide
bridge, site-directed mutagenesis of these two cysteines
on either LAT1 or 4F2hc does not inhibit amino acid
transport [56].

Moreover, according to the high sequence homology,
it could be shown that the corresponding cysteine in
human xCT (cysteine 158, red dot and * in figure 2)
[57] also forms a disulfide bridge to 4F2hc.

Functional data for amino acids potentially
involved in substrate interaction and functional
transport

Different functional studies of TH transporters could
identify amino acid residues potentially involved in sub-
strate interaction. To gain insights into structure-func-
tion relationship in TH transport, we designed the first
structural model for human MCTS8. Thereby, the con-
served and charged amino acids R445 at TMHS8 (marked
# in figure 2) and D498 at TMHI10 (marked & in figure
2) have been identified as being involved in substrate
interaction. An abrogated T3 transport by the alanine
mutants R445A and D498A supported their predicted
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role in substrate recognition, although both mutants
were exposed to the cell surface [26].

The sensitive arginine (blue bar) and aspartate (red
bar) are conserved at the MCT8 and MCT10 group in
TMHS8 and TMHI10, respectively (figure 2). The MCT8
model allows to identify transport characteristics of TH
and to rationalize potential interactions of amino acids
including those mutated in patients with AHDS.

In the high-affinity T, transporter Oatplcl Westholm
et al. identified amino acid residues to be critical for T,
transport and demonstrated the presence of high and low
affinity binding sites [27]. In their study they mapped rat
Oatplcl substrate interacting sites. W277 and W278
(§ in figure 2) were shown to play a major role in T,
transport with direct binding effects on one binding site.

Oatplcl mutations that reach the cell membrane but
affect the transport function such as G400A/V and
G410A/V at TMHS8 (marked ® and ¥ in figure 2) were
proposedly involved in transport kinetics. Their alanine
and also valine mutants displayed wild type-like uptake
activity but exhibit diminished T, transport at high sub-
strate concentrations. The authors suggested that a sub-
strate binding site might collapse or is turned to
inability to convert between input and output states.
Based on mutants of the conserved arginine R601
(marked // in figure 2) at TMH11 of rat Oatplcl the
authors suggested that this arginine may serve within
OATP members as a countercharge for anionic binding
to OATP1C1 [27]. Genetic variations by Single nucleo-
tide polymorphisms (SNPs) have been detected to be
involved in disturbed substrate transport like methotrex-
ate transport at human OATP1A2 [58] such as R168C
at TMH4 [58] (marked 4 in figure 2). Recently it has
been proven that some of these SNPs such as I13T at
the intracellular N-terminal tail (marked e in figure 2),
and E172D at TMH4 (marked ¢ in figure 2), also effect
the T3 and T, transport [59].

Our sequence comparison scheme showed that the
isoleucine (marked e in figure 2) at amino acid position
13 at the N-terminal tail is only conserved at the
OATP1A2 group (green bar in figure 2), while the other
identified TH sensitive residues such as arginine (blue
bars in figure 2) and glutamate (red bar in figure 2)
located at TMH4, the two tryptophans (green bars in
figure 2) at TMHS6, the two glycines (green bars) at
TMHS and the arginine (blue bar) in TMHI11 are con-
served within the OATP family.

Thereby it is noticeable that the TH transport sensi-
tive position glycine 410 (marked &#9679 in figure 2) of
rat Oatplcl in TMHS8 corresponds to the position of
the transport sensitive arginine 445 (marked # in figure
2) in TMHS8 at human MCTS8.

Boado et al. identified amino acids in the L-type
amino acid transporter LAT1 from rabbit, which are

Page 7 of 10

potentially involved in trafficking mechanisms to the
plasma membrane. They showed that the cysteine resi-
due 439 (corresponding to C443 in human LAT1) plays
a significant role at TMH11 in either folding or inser-
tion of the transporter protein in the plasma membrane
[56]. Mutagenic analysis of the amino acids G219 and
W234 in rabbit LAT1, which differ in relation to the
human or rat LAT1, demonstrated marked changes in
the affinity and capacity of LAT1 [60]. In order to iden-
tify domains involved in recognition of the light chains,
LAT1, LAT2, and y+LAT2 by 4F2hc were investigated
by Broer et al.. They suggested that extracellular
domains of the 4F2hc are mainly responsible for recog-
nition of light chains other than LAT1 and that the
extracellular domain ensures proper translocation to the
plasma membrane [61]. Functional data for xCT demon-
strated that H110 located in IL1 which here also repre-
sents the re-entrant loop (marked + in figure 2) may lie
close to the substrate binding/permeation pathway of
xCT [21]. Studies of the cysteine residue 327 at TMH8
of xCT (marked ~ in figure 2) indicated that it is also
located close to the substrate binding site of xCT [62].
This transport sensitive cysteine at TMHS is conserved
in xCT and LAT1 transporters but not in LAT2. In
addition, it occurs sporadically at the OATP group.

Residues that are sensitive for TH transport have been
found for MCT8 on TMHS8 and TMH10 and priorily on
TMH4, TMH6, TMH8 and TMH11 for Oatplcl. Until
now, no TH transport sensitive residues have been
reported for LAT1 and LAT2. For the highly homolo-
gous xCT relevant residues for substrate transport have,
however, been identified at the re-entrant loop IL1 and
on TMHS8. When comparing the transport sensitive fea-
tures by mapping them on a sequence alignment
scheme (figure 2), it becomes clear that the identified
residues are almost only conserved within one particular
TH transporter family. None of the sensitive residues
are highly conserved across all three considered families.
However, the location of a TH sensitive glycine at
TMHBS of the Oatplcl and a substrate sensitive cysteine
at TMHS8 of the xCT corresponds to a similar region,
where in TMHS8 of the MCT8 a TH transport sensitive
arginine was found (figure 2).

Conclusions

A comparison of TH transporter sequences reveals that
with the exception of MCT10 secondary TH transpor-
ters belonging to different transporter type families are
more divergent to the primary TH transporter MCTS.
All different endogenous substrates that are transported
by these diverse transporters contain at least one com-
mon molecular feature, namely the amino and carboxy-
late functional group of amino acids. A comparison of
locations and types of the identified sensitive TH



Kinne et al. Thyroid Research 2011, 4(Suppl 1):S7
http://www.thyroidresearchjournal.com/content/4/51/S7

transporting residues revealed that the known positive
or negative charged residues occur as conserved amino
acids within each of the transporter types, but not over
all TH transporters. Due to the fact that highly diverse
amino acid properties (arginine and glycine respectively)
have been identified as sensitive for TH transport at a
corresponding position of TMHS8 for MCT8 and
Oatplcl, we presume that molecular details of the
translocation mechanisms are varying between MCT8
and Oatplcl. From the divergent sequence features
among the three secondary TH transporter types and
the lack of any highly conserved sensitive positively or
negatively charged residues as a common counterpart
for the amino acid moiety of the substrates, we conclude
that the molecular transport mechanisms are likely orga-
nized either a) by different molecular determinants in
the divergent transporter types or b) the counterpart for
amino acid moiety of the substrates at the transporter
are not charged side chains but other proton acceptors
or donators. Moreover, even though the TH transpor-
ters share the common 12 transmembrane spanners, an
identical conformation for all TH transporters is not
very likely, particularly at least for the LAT family exhi-
biting an associated 13th transmembrane helix that is
provided by the escort protein. A distinct conformation
of the two LATs is also supported by the findings for
the homologous xCT suggesting a re-entrant function of
the IL1. On the other hand the coincidence of sensitive
positions for substrate transport at TMHS8 (although by
divergent residues) in the different TH transporters
MCTS8, OATP1C1 and even in xCT could at least be a
hint for shared molecular transport events executed at a
comparable interior site on TMHS8 of the transporters
considered here.

Therefore, a detailed knowledge of molecular mechan-
isms of TH translocation through the membrane trans-
porting proteins by investigation of structure-function
relationships between different substrates and their tar-
gets is of vital importance to understand the molecular
reasons for defects in TH transport. In this respect,
future investigations of the molecular mechanisms for
different substrate transport in the divergent TH trans-
porters are of great importance to clarify the structural-
functional properties of TH transport.
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