RESEARCH Open Access ## Check for updates # Proportion of serum thyroid hormone concentrations within the reference ranges in athyreotic patients on levothyroxine monotherapy: a retrospective study Mitsuru Ito*, Sawako Takahashi, Mikiko Okazaki-Hada, Mizuho Minakata, Kazuyoshi Kohsaka, Tomohiko Nakamura, Toshihiko Kasahara, Takumi Kudo, Eijun Nishihara, Shuji Fukata, Mitsushige Nishikawa, Takashi Akamiuzu and Akira Miyauchi #### **Abstract** **Background:** In patients receiving thyroid-stimulating hormone (TSH) suppressive therapy with levothyroxine (LT_4) after total thyroidectomy for thyroid cancer, thyroid function tests should be performed to adjust the LT_4 dose. Specifically, serum TSH concentrations are commonly measured because TSH suppression is necessary according to thyroid cancer risk. The aim of the present study was to elucidate whether free thyroxine (FT_4) or free triiodothyronine (FT_3) indicates better for adjusting the dose in athyreotic patients on LT_4 monotherapy after total thyroidectomy. **Methods:** We retrospectively studied the compatibility of free thyroid hormone (FT_4 and FT_3) concentrations with reference ranges in athyreotic patients on LT_4 monotherapy after total thyroidectomy. **Results:** We identified 2210 consecutive patients from their medical records. Of these patients, 250 had both FT_4 and FT_3 concentrations in addition to TSH. Two hundred seven had serum TSH concentrations below the reference range (0.5–5.0 µIU/mL), while 43 had them within the reference range. In the 207 patients with TSH concentrations below the reference range, 61 patients (29.5%) had FT_4 concentrations within the reference range (0.9–1.7 ng/dL) and 146 patients (70.5%) had FT_4 concentrations above the reference range. In contrast, 10 patients (4.8%) had FT_3 concentrations below the reference range (2.3–4.0 pg/mL) and 8 (3.9%) had FT_3 concentrations above the reference range; 189 patients (91.3%) had concentrations within the reference range. Of the 43 patients with TSH concentrations within the reference range, 25 (58.1%) had FT_4 concentrations within the reference range and 18 (41.9%) had FT_4 concentrations above the reference range. While, 11 patients (25.6%) had FT_3 concentrations below the reference range and one (2.3%) had FT_3 concentrations above the reference range; hence, 31 patients (72.1%) had FT_3 concentrations within the reference range. **Conclusion:** This study showed that measuring FT_3 concentrations rather than FT_4 concentrations as the subsequent parameter of thyroid function might be more useful for disease management in terms of the proportion of serum thyroid hormone concentrations within the reference ranges. Furthermore, FT_3 measurement could be useful in *Correspondence: ito02@kuma-h.or.jp Kuma Hospital, Center for Excellence in Thyroid Care, 8-2-35 Shimoyamate-Dori, Chuo-Ku, Kobe, Hyogo 650-0011, Japan © The Author(s) 2022. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third partial in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Ito et al. Thyroid Research (2022) 15:9 Page 2 of 6 providing more detailed treatments, including avoiding more aggressive TSH suppressive therapy and identifying the presence of low T_3 syndrome in the background. **Keywords:** Thyroxine, Triiodothyronine, Thyroid-stimulating hormone suppressive therapy, Athyreotic patients #### **Background** There are two thyroid hormones, thyroxine (T₄) and triiodothyronine (T₃). T₃ is the biologically active thyroid hormone. In normal subjects, 100% of T₄ and approximately 20% of T₃ are secreted by the thyroid gland, and approximately 80% of T₃ is derived from the conversion of T_4 to T_3 in extra-thyroidal peripheral tissues [1]. Thus, a relative T₃ deficiency may be present in athyreotic patients during levothyroxine (LT₄) monotherapy. We and other investigators [2–4] compared postoperative T₃ concentrations in patients on LT₄ therapy with their preoperative concentrations or concentrations in euthyroid controls and observed that among athyreotic patients who underwent total thyroidectomy and received LT₄, patients with normal serum thyroid-stimulating hormone (TSH) concentrations had mildly low serum-free triiodothyronine (FT₃) concentrations, patients with mildly suppressed serum TSH concentrations had normal serum FT₃ concentrations, and patients with strongly suppressed serum TSH concentrations had increased serum FT₃ concentrations. Serum-free thyroxine (FT₄) concentrations were significantly increased in all groups; however, the magnitude of the increase varied according to the TSH concentration. Thyroid function tests are used in several clinical settings to evaluate thyroid dysfunction, assess the adequacy of LT₄ therapy, and monitor hyperthyroidism treatment. Patients with primary hypothyroidism who are receiving LT₄ can be monitored by assessing serum TSH concentrations because serum FT4 measurements lack sensitivity to assess the appropriateness of the LT₄ dose. In general, patients with hypothyroidism who are receiving LT₄, including TSH suppressive therapy, can be monitored by assessing serum TSH and FT₄ concentrations [5]. While several investigators reported that athyreotic patients on LT₄ had relatively high FT₄ concentrations and comparable FT3 concentrations compared to preoperative values, suggesting that FT_3 measurements may be more useful than FT₄ measurements in adjusting thyroid hormone replacement therapy in such patients when referring to reference values in healthy subjects [2-4]. This aim of study is to see whether athyretotic patients on LT_4 monotherapy after total thyroidectomy are more likely to have either FT_4 or FT_3 measurements within reference intervals when the therapeutic goal is to maintain TSH within or below the reference range and elucidate whether FT_4 or FT_3 is a better indicator for adjusting the dose in such patients. To facilitate this study, only patients with papillary thyroid carcinoma without relevance to the thyroidal conversion of T_4 to T_3 [6] were selected. #### Methods From their medical records, we identified 2210 consecutive patients who underwent a thyroidectomy for papillary thyroid carcinoma between January 2019 and March 2021 at Kuma Hospital and were followed at least for 6 months postoperatively. Among 2210 patients, TSH and FT₄ levels were measured in 511 patients using thyroid function tests and TSH and FT₃ levels were measured in 1449 patients using thyroid function tests. Two hundred fifty patients had their TSH, FT₄, and FT₃ levels measured. In the present study, we evaluated the compatibility of free thyroid hormone (FT₄ and FT₃) concentrations with reference ranges in these 250 patients who had both FT₄ and FT₃ measurements. The following patients were excluded: (1) those who underwent near-total or subtotal thyroidectomy; (2) those with thyroid malignancies besides papillary carcinoma; (3) those with thyroid dysfunction, including Graves' disease, thyroid dyshormonogenesis, or autonomously-functioning thyroid nodules; (4) those whose medications, including amiodarone, lithium, β-blocker, or iodine-containing drugs, directly affected thyroid function; or (5) those who were pregnant or lactating. Patients who had postsurgical hypoparathyroidism and those who failed to achieve suppression of TSH concentrations were also excluded. The included patients who underwent total thyroidectomy were initially administered 2.0 µg/kg LT₄ daily after surgery. Thyroid function tests were performed 1 month after surgery and every 2-3 months thereafter. The LT₄ dosage was adjusted to achieve the target TSH levels determined according to the risk of recurrence based on the three-level stratification in American Thyroid Association (ATA) guidelines [7]. The target serum TSH levels were strongly suppressed TSH levels (≤ 0.05 lIU/mL) for the high-risk patients, mildly suppressed TSH levels $(0.05 < TSH \le 0.5 \text{ IIU/mL})$ for the intermediate-risk patients, and normal TSH levels $(0.5 < TSH \le 5 IIU/mL)$ for the low-risk patients. The present study was approved by the Ethical Committee at Kuma Hospital (No 20200709-1), and all patients provided informed consent. Ito et al. Thyroid Research (2022) 15:9 Page 3 of 6 #### **Thyroid function tests** Postoperative thyroid profiles of each patient were obtained after stabilizing the thyroid profiles for at least 6 months after thyroidectomy. Blood samples were obtained in the morning after the patient fasted overnight and after ingesting LT₄. Serum TSH, FT₄, and FT₃ concentrations were measured using an electrochemiluminescence immunoassay (Elecsys; Roche Diagnostics GmbH, Mannheim, Germany). Reference ranges were calculated using samples from healthy Japanese adult volunteers [8]. The reference ranges for TSH were calculated from Mean ± 2SD of lognormal distribution using serum from 824 subjects (0.5-5.0 µIU/mL). The reference ranges for FT4 were calculated from the 95% range by non-parametric method using serum from 738 subjects (0.9-1.7 ng/dL). The reference ranges for FT3 were calculated from the 95% range by non-parametric method using serum from 838 subjects (2.3–4.0 pg/mL). The intra-assay coefficients of variation were < 10% for the TSH assay, $\leq 8\%$ for the FT₄ assay, and $\leq 10\%$ for the FT₃ assay. #### Statistical analysis Grouped data were expressed as the mean \pm standard deviation or the median (25th to 75th percentiles). Postoperative two-group comparisons were performed using the χ^2 test (gender), unpaired t-test in case of normal distribution, or Mann-Whitney U test in case of nonparametric distribution. Significance was defined with two-sided p-values <0.05. Statistical analyses were performed using the StatFlex version 6.0 (Artech Co., Ltd., Osaka, Japan). #### Results ### Characteristics of the two groups in which FT₄ or FT₃ concentrations were measured using thyroid function tests Among 250 patients, 207 had serum TSH concentrations below the reference range (0.5–5.0 μ IU/mL) (Group I) and 43 had them within the normal range (Group II). In the present study, we examined the compatibility of each thyroid hormone measurement (FT₄ or FT₃) with the reference range in the two patient groups. The characteristics of patients in the two groups are shown in Table 1. # Compatibility of FT₄ or FT₃ concentrations measured through thyroid function tests with reference ranges in patients with suppressive serum TSH concentrations Figure 1 shows the compatibility of FT_4 (A) or FT_3 (B) concentrations with reference ranges in patients with suppressive serum TSH concentrations. Of the 207 patients, 61 (29.5%) had FT_4 concentrations within the reference range (0.9–1.7 ng/dL) and 146 (70.5%) had FT_4 **Table 1** Clinical characteristics in the two patient groups with suppressed TSH levels (I) and normal TSH levels (II) | Patient Subgroups | Group I | Group II | p ^a | |-------------------------------|---------------------|---------------------|----------------| | No of patients (male) | 207 (35) | 43 (8) | ns | | Age (years) | 53 ± 16 | 61 ± 17 | < 0.01 | | Follow-up time (day) | 2914 ± 1649 | 3406 ± 1563 | ns | | LT ₄ dose (µg/day) | 125 (100-150) | 125 (100-137.5) | ns* | | TSH (μIU/mL) | 0.027 (0.009-0.095) | 1.190 (0.909–2.395) | < 0.001* | | FT_4 (ng/dL) | 1.91 (1.67–2.16) | 1.63 (1.46-1.80) | < 0.001 | | FT ₃ (pg/mL) | 3.10 (2.74–3.45) | 2.64 (2.31-2.82) | < 0.001 | | | | | | ^a Statistical significance was analyzed by the χ^2 test (sex), unpaired t-test, or *Mann–Whitney U test. Values are expressed as mean \pm SD or median (25th–75th percentiles) Abbreviations: TSH Thyroid stimulating hormone, LT_4 Levothyroxine, FT_4 Free thyroxine, FT_3 Free triiodothyronine concentrations above the reference range. However, none of them had serum FT_4 concentrations below the reference range. In contrast, 10 patients (4.8%) had FT_3 concentrations below the reference range and 8 (3.9%) had FT_3 concentrations above the reference rang; hence, 189 patients (91.3%) had FT_3 concentrations within the reference range (2.3–4.0 pg/mL). ## Compatibility of FT₄ or FT₃ concentrations measured through thyroid function tests with reference ranges in patients with normal serum TSH concentrations Figure 2 shows the compatibility of FT_4 (A) or FT_3 (B) concentrations with reference ranges in patients with normal serum TSH concentrations. Of the 43 patients, 25 (58.1%) had FT_4 concentrations within the reference range (0.9–1.7 ng/dL) and 18 (41.9%) had FT_4 concentrations above the reference range. However, none of them had FT_4 concentrations below the reference range. In contrast, 11 patients (25.6%) had FT_3 concentrations below the reference range and one (2.3%) had FT_3 concentrations above the reference range; hence, 31 patients (72.1%) had FT_3 concentrations within the reference range (2.3–4.0 pg/mL). ## Serum FT₃ concentrations above or below the reference range in athyreotic patients receiving TSH suppressive therapy We further investigated athyreotic patients receiving TSH suppressive therapy with abnormal FT_3 concentrations. We found that 7 of 8 patients with FT_3 concentrations above the reference range had completely suppressed TSH concentrations. Among 8 patients with FT_3 concentrations above the reference range, the LT_4 dose was reduced in 5 patients. In 6 of the 10 patients with FT_3 concentrations below the reference Ito et al. Thyroid Research (2022) 15:9 Page 4 of 6 **Fig. 1** Compatibility of FT_4 (**A**) or FT_3 (**B**) concentrations measured through thyroid function tests with reference ranges in patients with suppressive serum TSH concentrations. Among 250 patients, 207 had serum TSH concentrations below the reference range (0.5–5.0 μ IU/mL). The reference range for each thyroid hormone is indicated by the square area. Among 207 patients, 61 patients (29.5%) had FT_4 concentrations within the reference range (0.9–1.7 ng/dL) and 146 (70.5%) had FT_4 concentrations above the reference range. However, none of them had serum FT_4 concentrations below the reference range. On the other hand, 10 patients (4.8%) had FT_3 concentrations below the reference range (2.3–4.0 pg/mL) and 8 patients (3.9%) had FT_3 concentrations above the reference range; hence, 189 patients (91.3%) had concentrations within the reference range. FT_4 , free thyroxine; FT_3 free triiodothyronine **Fig. 2** Compatibility of FT_4 (**A**) or FT_3 (**B**) concentrations measured through thyroid function tests with reference ranges in patients with normal serum TSH concentrations. Among 250 patients, 43 had them within the normal range (0.5–5.0 μ IU/mL). The reference range for each thyroid hormone is indicated by the square area. Among 43 patients, 25 patients (58.1%) had FT_4 concentrations within the reference range (0.9–1.7 ng/dL) and 18 (41.9%) had FT_4 concentrations above the reference range. However, none of them had serum FT_4 concentrations below the reference range. On the other hand, 11 patients (25.6%) had FT_3 concentrations below the reference range (2.3–4.0 pg/mL) and one patient (2.3%) had FT_3 concentrations above the reference range; hence, 31 patients (72.1%) had concentrations within the reference range. FT_4 , free thyroxine; FT_3 , free triiodothyronine range, the reduction of FT_3 concentration was transient. In these patients, incidental poor compliance with LT_4 medication and instability of measurement were suspected. Thus, 4 patients had persistently FT_3 concentrations below the reference range; 3 of these 4 patients had underlying conditions: multiple lung and bone metastases, chronic renal failure, and low body mass index, which could be the cause of their reduction of serum T_3 concentrations. Of these 4 patients, the LT_4 dose was not increased in 3 patients with low T_3 syndrome, while the dose was subsequently increased for the remaining one patient. Ito et al. Thyroid Research (2022) 15:9 Page 5 of 6 #### **Discussion** In this study, we examined the compatibility of FT_4 or FT_3 with reference ranges in athyreotic patients with suppressed or normal TSH concentrations treated with LT_4 after total thyroidectomy for thyroid cancer. In patients with TSH concentrations within the reference range, FT₄ concentrations were above the reference range in just under half of them (41.9%), and FT₃ concentrations were below the reference range in a quarter of them (25.6%). Regarding the compatibility of FT₄ and FT₃ concentrations with reference ranges in patients receiving LT₄ after total thyroidectomy, Gullo et al. examined patients with normal serum TSH concentrations and reported that FT₄ concentrations were above the reference range in 7.2% of patients and FT3 concentrations were below the reference range in 15.2% of patients. They concluded that FT₄ and FT₃ concentrations are not necessarily within reference ranges in patients with normal TSH concentrations [3]. Several studies, including ours, compared postoperative T₃ concentrations in patients receiving LT₄ therapy with their preoperative concentrations or with the concentrations in euthyroid controls [2, 4] and found that among athyreotic patients receiving LT₄ after total thyroidectomy, those with normal serum TSH concentrations had mildly high serum FT₄ concentrations, and mildly low serum FT₃ concentrations; these results were coherent with those of the present study. In patients with suppressed TSH concentrations, we found that serum FT₄ concentrations were above the reference range in most patients (70.5%), whereas serum FT₃ concentrations were within the reference range in most patients (91.3%). In our previous study [2, 9, 10], we reported that patients with mildly suppressed serum TSH concentrations had normal serum FT₃ concentrations, and those with strongly suppressed serum TSH concentrations had increased serum FT₃ concentrations. Serum FT_4 concentrations were significantly increased in all groups; however, the magnitude of increase varied with TSH concentrations. Therefore, many patients receiving TSH suppressive therapy with LT₄ after total thyroidectomy may have serum FT4 concentrations above the upper end of the reference range and serum FT₃ concentrations within the reference range; these results were confirmed in the present study. In the present study, serum TSH concentrations in patients with FT_3 concentrations above the reference range were completely suppressed in the majority of cases. In fact, the LT_4 dose was reduced in some patients with completely suppressed TSH concentrations and elevated FT_3 concentrations. In such cases, the reduction of LT_4 dosage may be considered reasonable, especially in patients with symptoms of thyrotoxicosis; those with suspected complications, such as osteoporosis or atrial fibrillation; or low-risk patients. Several studies have suggested that TSH suppressive therapy after total thyroidectomy for thyroid cancer might increase the risk of complications, such as osteoporosis [11] or atrial fibrillation [12]. However, the potential role of a different degree of TSH suppression for such complications remains to be established. Klein et al. reported a relationship between the degree of TSH suppression and cardiovascular disease mortality. In their study, both cardiovascular and allcause mortality rates increased with complete TSH suppression but not with mild TSH suppression [13]. We reported that athyreotic patients receiving LT₄ with mild TSH suppression and FT₄ concentrations above the reference range but normal FT3 concentrations, metabolic indicators [9], and physical symptoms [10] were in a euthyroid state. In contrast, athyreotic patients with complete TSH suppression that resulted in both FT₄ and FT₃ concentrations above the reference range, metabolic indicators [9], and physical symptoms [10] were in a thyrotoxic state. These data suggest that among athyreotic patients receiving LT₄, patients with mildly suppressed TSH and normal FT₃ concentrations were closest to the euthyroid state, whereas those with completely suppressed TSH concentrations and FT₃ concentrations above the reference range were in the thyrotoxic state. Therefore, in patients with TSH suppression receiving LT₄ after total thyroidectomy, determination of serum FT₃ and TSH concentrations may be useful to avoid thyrotoxicosis. In the present study, the duration of abnormal concentrations was transient in patients with FT₃ concentrations below the reference range, probably because of the variability of FT₃ concentrations measured in trace amounts. However, some cases with persistently FT₃ concentrations below the reference range were attributed to low T₃ syndrome caused by underlying diseases. In such cases, an increase in the LT₄ dose would have been inappropriate. In the case of FT₃ concentrations below the reference range in TSH suppressive therapy after total thyroidectomy, it may be necessary to pay attention to the presence or absence of an underlying disease and monitor the persistence of FT₃ concentrations below the reference range by repeated measurements to confirm the presence of a low T₃ syndrome [14]. This study had some possible limitations. First, in this retrospective study, only patients who underwent both FT_4 and FT_3 measurements were included, while patients who underwent either FT_4 or FT_3 measurement because the simultaneous measurement of FT_4 and FT_3 would not be approved for insurance reimbursement were excluded. Only 250 out of the 2100 Ito et al. Thyroid Research (2022) 15:9 Page 6 of 6 eligible subjects were studied in this study. Thus, this selection may have influenced the results. Second, we examined only the compatibility of thyroid hormones with the reference range; thus, further well-designed studies, including clinical features of thyroid hormone excess or deficiency, or the recurrence of thyroid cancer may be necessary. #### **Conclusions** In the present study, we evaluated whether athyretotic patients on LT₄ after total thyroidectomy are more likely to have either FT₄ or FT₃ measurements within reference intervals when the therapeutic goal is to maintain TSH within or below the reference range. As a result, the majority of patients with suppressed TSH concentrations had serum FT₄ concentrations above the upper end of the reference range and serum FT₃ concentrations within the reference range. While, fewer patients with TSH within the reference range had FT₃ concentrations within the reference range. This study showed that measuring FT₃ concentrations rather than FT₄ concentrations as the subsequent parameter of thyroid function may be more useful for disease management in athyreotic patients on LT₄ in terms of the proportion of serum thyroid hormone concentrations within the reference ranges. Furthermore, FT₃ measurement could be useful in providing more detailed treatments, including avoiding more aggressive TSH suppressive therapy and identifying the presence of low T_3 syndrome in the background. #### Abbreviations TSH:Thyroid-Stimulating Hormone; LT_4 : Levothyroxine; FT_4 : Free thyroxine; FT_3 : Free triiodothyronine; T_4 : Thyroxine; T_3 : Triiodothyronine. #### Acknowledgements Not applicable. #### Authors' contributions Mitsuru Ito designed the study and analyzed the data. The other authors contributed by performing surgery and/or caring for patients. All authors read and approved the final manuscript. #### Funding None of the authors received any funding for this study. #### Availability of data and materials The datasets generated during and/or analysed during the current study are available from the corresponding author, Ito M, on reasonable request. #### **Declarations** #### Ethics approval and consent to participate The present study was approved by the Ethical Committee at Kuma Hospital (No 20200709–1). The study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. All study participants provided informed consent. #### Consent for publication All study participants have consented to the publication. #### **Competing interests** The authors have no relevant financial or non-financial interests to disclose. Received: 12 November 2021 Accepted: 27 April 2022 Published online: 10 May 2022 #### References - Pilo A, Iervasi G, Vitek F, Ferdeghini M, Cazzuola F, Bianchi R. Thyroidal and peripheral production of 3,5,3'-triiodothyronine in humans by multicompartmental analysis. Am J Phys. 1990;258:715–26. https://doi.org/10.1152/ aipendo.1990.258.4.E715. - Ito M, Miyauchi A, Morita S, Kudo T, Nishihara E, Kihara M, et al. TSH-suppressive doses of levothyroxine are required to achieve preoperative native serum triiodothyronine levels in patients who have undergone total thyroidectomy. Eur J Endocrinol. 2012;167:373–8. https://doi.org/10.1530/EJE-11-1029. - Gullo D, Latina A, Frasca F, Le Moli R, Pellegriti G, Vigneri R. Levothyroxine monotherapy cannot guarantee euthyroidism in all athyreotic patients. PLoS One. 2011;6:e22552. https://doi.org/10.1371/journal.pone.0022552 - Hoermann R, Midgley JE, Giacobino A, Eckl WA, Wahl HG, Dietrich JW, et al. Homeostatic equilibria between free thyroid hormones and pituitary thyrotropin are modulated by various influences including age, body mass index and treatment. Clin Endocrinol. 2014;81:907–15. https://doi. org/10.1111/cen.12527. - Biondi B, Wartofsky L. Treatment with thyroid hormone. Endocr Rev. 2014;35:433–512. https://doi.org/10.1210/er.2013-1083. - Miyauchi A, Takamura Y, Ito Y, Miya A, Kobayashi K, Matsuzuka F, et al. 3,5,3'-Triiodothyronine thyrotoxicosis due to increased conversion of administered levothyroxine in patients with massive metastatic follicular thyroid carcinoma. J Clin Endocrinol Metab. 2008;93:2239–42. https://doi. org/10.1530/EJE-11-1029. - Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2009;19:1167–214. https://doi.org/ 10.1089/thy.2009.0110. - 8. Sonan M, Hiraoka K, Yamada E, Watanabe S, Kobayashi M. Fundamental and clinical evaluation of TSH and thyroid hormone measurement by electrochemiluminescence immunoassay system "Modular Analytics <EE>". Jpn J Med Pharm Sci. 2001;46:759–71. - Ito M, Miyauchi A, Hisakado M, Yoshioka W, Ide A, Kudo T, et al. Biochemical markers reflecting thyroid function in athyreotic patients on levothyroxine monotherapy. Thyroid. 2017;27:484–90. https://doi.org/10.1089/thy.2016.0426. - Ito M, Miyauchi A, Hisakado M, Yoshioka W, Kudo T, Nishihara E, et al. Thyroid function related symptoms during levothyroxine monotherapy in athyreotic patients. Endocr J. 2019;66:953–60. https://doi.org/10.1507/ endocrj.EJ19-0094. - Heemstra KA, Hamdy NA, Romijn JA, Smit JW. The effects of thyrotropinsuppressive therapy on bone metabolism in patients with well-differentiated thyroid carcinoma. Thyroid. 2006;16:583–91. https://doi.org/10.1089/ thy/2006.16.583 - Abonowara A, Quraishi A, Sapp JL, Alqambar MH, Saric A, O'Connell CM, et al. Prevalence of atrial fibrillation in patients taking TSH suppression therapy for management of thyroid cancer. Clin Invest Med. 2012;35:152– 6. https://doi.org/10.25011/cim.v35i3.16591. - Klein Hesselink EN, Klein Hesselink MS, de Bock GH, Gansevoort RT, Bakker SJ, Vredeveld EJ, et al. Long-term cardiovascular mortality in patients with differentiated thyroid carcinoma: an observational study. J Clin Oncol. 2013;31:4046–53. https://doi.org/10.1200/JCO.2013.49.1043. - Chopra IJ. Clinical review 86: Euthyroid sick syndrome: is it a misnomer? J Clin Endocrinol Metab. 1997;82:329–34. https://doi.org/10.1210/jcem. 822.3745. #### **Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.