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Abstract
Background Ultrasound is the first-line imaging modality for detection and classification of thyroid nodules. 
Certain features observable by ultrasound have recently been equated with potential malignancy. This retrospective 
cohort study was conducted to test the hypothesis that radiomics of the four categorical divisions (medullary [MTC], 
papillary [PTC], or follicular [FTC] carcinoma and follicular thyroid adenoma [FTA]) demonstrate distinctive sonographic 
characteristics. Using an artificial neural network model for proof of concept, these sonographic features served as 
input.

Methods A total of 148 patients were enrolled for study, all with confirmed thyroid pathology in one of the four 
named categories. Preoperative ultrasound profiles were obtained via standardized protocols. The neural network 
consisted of seven input neurons; three hidden layers with 50, 250, and 100 neurons, respectively; and one output 
layer.

Results Radiomics of contour, structure, and calcifications differed significantly according to nodule type (p = 0.025, 
p = 0.032, and p = 0.0002, respectively). Levels of accuracy shown by artificial neural network analysis in discriminating 
among categories ranged from 0.59 to 0.98 (95% confidence interval [CI]: 0.57–0.99), with positive and negative 
predictive ranges of 0.41–0.99 and 0.78–0.97, respectively.

Conclusions Our data indicate that some MTCs, PTCs, FTCs, and FTAs have distinctive sonographic characteristics. 
However, a significant overlap of these characteristics may impede an explicit classification. Further prospective 
investigations involving larger patient and nodule numbers and multicenter access should be pursued to determine if 
neural networks of this sort are beneficial, helping to classify neoplasms of the thyroid gland.
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Background
Thyroid nodules are common in the general popula-
tion. A recent update on related diagnostics indicates 
that ultrasound characteristics may be helpful in distin-
guishing benign from malignant growths [1]. To date, a 
number of researchers have detailed the ultrasound (US) 
features of thyroid carcinoma (medullary [MTC], papil-
lary [PTC], or follicular [FTC]) and thyroid adenomas 
[2–5].

In a study by Kim et al., > 90% of MTCs proved to be 
solid in appearance, with ~ 50% harboring calcifications 
on US examinations [6]. Thus, MTCs did not differ sub-
stantially from PTCs in this regard. Fang et al. have also 
compared US features of PTCs with those of benign 
thyroid nodules [3]. Some US parameters (i.e., irregu-
lar shape, ill-defined margins, taller-than-wide [TTW] 
shape, and calcifications) were typically displayed by 
PTCs, distinguishing them from a heterogeneous group 
of benign nodules.

Yu et al. have examined US appearances of FTCs rela-
tive to follicular thyroid adenomas (FTAs) [7]. Echo-
genicity was similar in nature, but cystic elements were 
less often observed in FTCs than in FTAs. In a recent 
US investigation of ours, FTCs were also of significantly 
greater size, compared with PTCs or benign nodules [4].

The medical literature presently offers few comparative 
US analyses in which three distinct variants of thyroid 
carcinoma (MTC, PTC, FTC) and FTAs are addressed. 
US imaging is considered the gold standard for mor-
phologic assessments of thyroid nodules and is gener-
ally recommended for those nodules detected clinically 
or through other imaging modalities [1]. Consequently, 
the American College of Radiology has devised the Thy-
roid Imaging Reporting and Data System (TI-RADS) as 

a standardized risk stratification system [8], necessitating 
some modifications over time [9].

In clinical practice fine-needle aspiration biopsies 
(FNABs) are performed for the evaluation of a benign or 
malignant nature of thyroid nodules. The clinical experi-
ence of the physician together with the US examination 
findings and a risk stratification system (i.e., TI-RADS), 
thyroid nodules will be selected for FNABs. However, 
some nodules might not be accessible for FNABs due to 
their anatomic localisation or due to the rejection of an 
FNAB by the patient. In these cases innovative artificial 
intelligence (AI) procedures might assist the physician in 
the assessment of thyroid nodules.

The diagnostic utility of a convolutional neural net-
work (CNN) has recently been tested in a large series of 
patients with thyroid cancer [10]. During a retrospective 
and multicohort diagnostic study, based on US images, a 
CNN model (vs. skilled radiologists) showed similar sen-
sitivity but improved specificity in identifying patients 
with thyroid cancer. Another CNN analysis reported 
even earlier involved TI-RADS classification of thyroid 
nodules [11]. The resultant performance in an open-
access database was excellent (98.29%).

For the present proof-of-concept investigation, we used 
an artificial neural network model to test the hypothesis 
that MTCs, PTCs, FTCs, and FTAs have distinctive US 
features. All parameters selected for analysis were identi-
fied by cervical US studies.

Materials and methods
This retrospective cohort study adhered to principles of 
the Declaration of Helsinki and its subsequent amend-
ments. It also conformed to guidelines of the Institutional 
Review Board (IRB) of the Friedrich-Alexander-Univer-
sity, Erlangen/Nuremberg, Germany under auspices of 
the Bavarian Hospital Act (Bayerisches Krankenhausge-
setz Art. 27 [4]). All subjects granted general permission 
for scientific use of their clinical data, supplying written 
informed consent for anonymous data publication. Ethics 
committee approval was waived since this was a retro-
spective study.

We enrolled 148 patients (men, 43; women, 105) sur-
gically treated for thyroid nodules between 2010 and 
2021, categorized (n = 37, each) as follows: group 1, MTC 
(men, 14; women, 23); group 2, PTC (men, 6; women, 
31); group 3, FTC (men, 13; women, 24); or group 4, FTA 
(men, 10; women, 27). All patient data were acquired 
from our institutional database. Within the designated 
time period, there were 37 patients with MTCs, 290 with 
PTCs, 63 with FTCs, and 911 with FTAs. Equivalent 
patient samplings were achieved for groups 2–4 using a 
random number generator. Biographic data of all quali-
fying patients are presented in Table  1. Recruitment of 
study subjects is shown in Fig. 1.

Table 1 Age and sex distribution of the patients in the four 
subsets

MTC PTC FTC FTA p
n 37 37 37 37 0.0512, 

ANOVA

mean age [years] 57 48 53 49

SD 16 16 15 12

Min 28 16 23 25

Max 94 83 87 73

males 14 6 13 10 < 0.0001, 
chi-
square 
test

% 38 2 35 27

females 23 31 24 27

% 62 98 65 73
MTC: medullary thyroid carcinoma, PTC: papillary thyroid carcinoma, FTC: 
follicular thyroid carcinoma, FTA: follicular thyroid adenoma, SD: standard 
deviation, MIN: minimum, MAX: maximum
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Each enrollee underwent thyroidectomy in one of two 
surgical departments. All diagnoses of thyroid carci-
noma or thyroid adenoma were confirmed histologically 
by board-certified pathologists with expertise in thyroid 
neoplasms.

In all patients, US devices used for preoperative exami-
nations were equipped with high-resolution longitudinal 
probes transmitting at 10.0  MHz (LOGIQ P6 Pro; GE 
Healthcare, Chicago, IL, USA). The entire body of imag-
ing data was stored in a picture archiving and commu-
nication system (PACS) for later analysis by two nuclear 
medicine specialists, each with > 10 years of experience 
reviewing > 2000 thyroid US examinations annually.

Patients were examined in supine positions, necks 
slightly extended. In doing so, both anterior and lateral 
neck areas were freely accessible by US probe. First, the 
entire right lobe was examined in transverse and longitu-
dinal orientations. Then, the same procedure was applied 
step-wise to left lobe and to isthmus.

Focal thyroidal lesions were recorded in two dimen-
sions and stored as above. Examiners assessed the fol-
lowing seven morphologic tumor criteria: (1) Volume 
(mL), calculated as v = 0.5 * (dx * dy * dz) using maximal 
lateral (dx), anteroposterior (dy), and craniocaudal (dz) 

axial diameters; (2) Shape, whether round (dx = dy = dz 
[± 10%]), oval (> 10% disparity in axial diameters, except 
TTW), irregular (undulating or complex shape), or TTW 
(anteroposterior diameter > lateral diameter, cranio-
caudal diameter discounted); (3) Contour (smooth vs. 
ill-defined); (4) Internal structure (homogeneous vs. non-
homogeneous); (5) Echogenicity, whether hypoechogenic 
(below adjacent tissue level but not anechoic), hypoecho-
genic with cysts (anechoic components), hyperechogenic 
(beyond adjacent tissue level), or hyperechogenic with 
cysts; (6) Calcification (+/−); and (7) Focality (one or mul-
tiple sites).

Criteria (2) through (7) for focal lesions corresponded 
to those defined by Russ et al. [9].

Artificial neural network architecture
This study was conducted to compare tumors by groups 
(i.e., MTC vs. PTC, MTC vs. FTC, MTC vs. FTA, PTC 
vs. FTC, PTC vs. FTA, and FTC vs. FTA) and with 
respect to the EU TI-RADS system, based on neural net-
work processing of ultrasonographic traits. Only three 
hidden layers were involved, given the relative paucity 
of data. Demographic (age and sex) and morphologic 

Fig. 1 Recruitment algorithm of the study subjects. MTC: medullary thyroid carcinoma, PTC: papillary thyroid carcinoma, FTC: follicular thyroid carcinoma, 
FTA: follicular thyroid adenoma
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characteristics (volume, shape, contour, structure, echo-
genicity, calcifications, and focality) served as input.

The network architecture is illustrated in Fig. 2. There 
are seven input neurons fully connected to three hidden 
layers of 50, 250, and 100 neurons respectively. Output 
is shown as a vector reflecting respective tumor prob-
abilities. In the hidden layer, a rectified linear unit is 
invoked as activation function, the output layer assuming 
a sigmoidal function and the mean squared error a loss 
function. To evaluate the network, a leave-one-out cross-
validation is carried out. Of all available datasets, 75% 
were used initially for training, 20% for validation, and 
5% for testing. Features of the implemented artificial neu-
ral network are listed in Table 2. The neural network was 
implemented in Python, Tensorflow and Keras.

Statistical analysis
Depending on the nature of data distribution, analysis of 
variance (ANOVA), Fisher’s exact test, or chi-square test 
was applied to assess differences among groups. Signifi-
cance in linear relations was gauged via Pearson’s corre-
lation coefficient, using multinomial logistic regression 
for multivariate relations. By default, confidence intervals 
of binary variables involved binomial distributions. In 

neural network performance analysis, the following met-
rics were generated: accuracy, sensitivity, specificity, pos-
itive predictive value, negative predictive value, Fleiss’ κ, 
Cohen’s κ, and F-score. All computations were driven by 
standard software (MATLAB vR2012b; The MathWorks 
Inc, Natick, MA, USA), setting significance at p < 0.05.

Results
Patient age and sex distributions
Mean patient age did not differ significantly (p = 0.0512, 
ANOVA), whereas female (vs. male) sex significantly 
predominated (p < 0.0001, chi-square test) across all four 
groups (see Table 1). The youngest (16 years) and the old-
est (94 years) participants were within PTC and MTC 
groups, respectively, with male patients accounting for 
2% and 38% therein.

Ultrasonographic characteristics of categorized nodules
Average tumor volume determined by US differed sig-
nificantly (p < 0.001, ANOVA). The smallest (0.01 mL) 
and the largest (122.67 mL) volumes recorded were 
within PTC and FTC groups, respectively (see Table 3). 
Equal numbers of subcentimeter nodules were found in 
the MTC and PTC groups (n = 7; 19%). Whereas in the 
FTC and FTA groups no subcentimeter nodules were 
detected.

Table 2 Features of the implemented neural network
Layer Shape Number of 

Parameters
Activation 
Function

Input layer (7,1) 0 -

Dense layer [(7,50), 
(50)]

450 ReLu

Dense layer [(7,250), 
(250)]

12,750 ReLu

Dense layer [(7,100), 
(100)]

25,100 ReLu

Dense layer [(7,2), (2)] 101 Sigmoid

Output (2,1) 0 -
Shape: the numbers represent the data vectors, ReLU: Rectified linear unit

Table 3 Tumor volume determined by ultrasound 
measurements in the four subsets

MTC PTC FTC FTA p
mean [mL] 2.33 1.27 20.06 8.37 < 0.001, 

ANOVA

SD 3.07 1.71 26.00 9.90

Min 0.06 0.01 0.48 0.29

Max 12.39 9.67 122.67 44.20
MTC: medullary thyroid carcinoma, PTC: papillary thyroid carcinoma, FTC: 
follicular thyroid carcinoma, FTA: follicular thyroid adenoma

Fig. 2 Architecture of the neural network with seven input neurons to discriminate among the classes of thyroid nodules
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Specific US-based tumor characteristics (shape, con-
tour, structure, echogenicity, calcifications, and focality) 
of the EU TI-RADS system were recorded for each lesion. 
Representative sonographic images of nodules are shown 
by group in Fig. 3, with distributions of features displayed 
presented in Table 4. In multivariate regression analysis, 

malignant nodules could be discriminated by US char-
acteristics, such as ill-defined contour and calcifications 
(r = 0.46; p < 0.001). US-based discrimination between 
two entities is shown in Table 5. Regression analysis indi-
cated that no single entity was distinguishable across all 
categorical groups (r = 0.18; p = 0.728) (see Table 5).

Table 4 Specific ultrasonographic tumor characteristics in the four subsets
MTC % PTC % FTC % FTA % ANOVA

shape 0.951

round 9 24 10 27 6 16 6 16

oval 17 46 18 49 26 70 25 68

irregular 11 30 5 14 4 11 6 16

ttw 0 0 4 11 1 3 0 0

contour 0.025

smooth 12 32 18 49 17 46 25 68

ill-defined 25 68 19 51 20 54 12 32

structure 0.032

homogeneous 12 32 11 30 8 22 11 30

inhomogeneous 25 68 26 70 29 78 14 38

cystic 0 0 0 0 0 0 12 32

echogenicity 0.0993

hypoechogeneous 33 89 29 78 26 70 23 62

hyperechogeneous 4 11 5 14 8 22 14 38

isoechogeneous 0 0 3 8 3 8 0 0

calcifications 0.0002

abscent 17 46 20 54 29 78 32 86

present 20 54 17 46 8 22 5 14

focality 0.5622

unifocal 37 100 34 92 36 97 36 97

multifdocal 0 0 3 8 1 3 1 3
MTC: medullary thyroid carcinoma, PTC: papillary thyroid carcinoma, FTC: follicular thyroid carcinoma, FTA: follicular thyroid adenoma, ttw: taller-than-wide

Table 5 Multivariate regression analysis of ultrasound characteristics to discriminate between two subsets
MTC PTC FTC FTA
r p r p r p r p

MTC - - 0.34 0.256 0.46 0.021 0.66 < 0.001

PTC - - 0.30 0.488 0.41 0.072

FTC - - 0.40 0.096

FTA - -
MTC: medullary thyroid carcinoma, PTC: papillary thyroid carcinoma, FTC: follicular thyroid carcinoma, FTA: follicular thyroid adenoma

Fig. 3 Sonographic appearances of follicular and parafollicular thyroid nodules. a) MTC right lobe, b) PTC right lobe, c) FTC right lobe. MTC: medullary 
thyroid carcinoma, PTC: papillary thyroid carcinoma, FTC: follicular thyroid carcinoma.
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Malignant nodules of MTC, PTC, and FTC groups 
were classified as EU TI-RADS 5 in 41%, 57%, and 38% of 
cases, respectively or as EU TI-RADS 4 in 54%, 38%, and 
38% of cases, respectively. In the FTA group, 5% and 43% 
of nodules were classified as EU TI-RADS 5 or 4, respec-
tively. EU TI-RADS classifications for all tumor groups 
are shown in Table 6 and in Fig. 4.

Artificial neural network performance
To determine how the artificial neural network per-
formed, we calculated sensitivity, specificity, and accu-
racy on a pair-wise basis. Sensitivity, specificity, and 
accuracy were lowest for MTC vs. PTC (0.65, 0.57, and 
0.59, respectively) and highest for MTC vs. FTA (0.97, 
0.98, and 0.98, respectively) (see Table 7).

Table 6 EU TIRADS classification for nodules in the four subsets
EU TIRADS 2 % EU TIRADS 3 % EU TIRADS 4 % EU TIRADS 5 %

MTC 0 0 2 5 20 54 15 41

PTC 0 0 2 5 14 38 21 57

FTC 0 0 9 24 14 38 14 38

FTA 14 38 5 14 16 43 2 5
MTC: medullary thyroid carcinoma, PTC: papillary thyroid carcinoma, FTC: follicular thyroid carcinoma, FTA: follicular thyroid adenoma

Table 7 Performance data of the neural network
Sensitivity Specificity Accuracy CI 95% PPV NPV

MTC vs. PTC 0.65 0.57 0.59 0.57–0.61 0.41 0.78

MTC vs. FTC 0.90 0.95 0.93 0.91–0.95 0.95 0.89

MTC vs. FTA 0.97 0.98 0.98 0.96–0.99 0.99 0.97

PTC vs. FTC 0.90 0.97 0.94 0.92–0.96 0.97 0.89

PTC vs. FTA 0.96 0.98 0.97 0.95–0.99 0.98 0.96

FTC vs. FTA 0.77 0.65 0.69 0.67–0.71 0.54 0.84

MTC + PTC + FTC vs. FTA 0.70 0.94 0.83 0.81–0.85 0.97 0.90
MTC: medullary thyroid carcinoma, PTC: papillary thyroid carcinoma, FTC: follicular thyroid carcinoma, FTA: follicular thyroid adenoma

Fig. 4 Distribution of the EU TIRADS classifications for subsets MTC, PTC, FTC and FTA. MTC: medullary thyroid carcinoma, PTC: papillary thyroid carci-
noma, FTC: follicular thyroid carcinoma, FTA: follicular thyroid adenoma
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In discriminating benign or low-risk nodules (EU TI-
RADS 2 or 3) from intermediate or high-risk nodules 
(EU TI-RADS 4 or 5), the neural network achieved an 
agreement of 97%, 92%, 19%, and 95% for MTC, PTC, 
FTC, and FTA groups. Corresponding values generated 
by the trained examiner were 95%, 95%, 76%, and 51%, 
respectively.

Overall, EU TI-RADS classifications of 2, 3, 4, and 5 
were correctly assigned by the neural network to MTC, 
PTC, FTC, and FTA groups in 54%, 51%, 18%, and 68% 
of cases.

Discussion
This retrospective study was undertaken to define US 
characteristics of histologically confirmed follicular and 
parafollicular thyroid neoplasms. We tested the hypoth-
esis that US features of thyroid cancers (medullary, 
papillary, or follicular) and adenomas are distinctive, 
implementing an artificial neural network analysis for 
proof of concept.

In most cases biopsy allows to differentiate between 
benign and malignant nodules. However, in some cases 
further work-up is undispensable. Due to inadequate 
samplings, inaccessability for FNAB or patient´s refusal 
some nodules remain unclassified. For these nodules 
ultrasonography classification systems (such as TIRADS) 
help to differentiate between a malignant and benign 
nature. With respect to potentially malignant nodules we 
consider it reasonable to further assess the tumor entity. 
This assessment of the tumor entity may contribute to 
define the most appropriate approach (surgical treatment 
versus active surveillance). In our oppinion the future 
clinical significance of artificial neural network analysis 
may lie in differentiating those nodules which remain 
unclassified by FNAB.

Data on US properties of thyroid malignancies abound 
in past reports, including one recent review of 52 obser-
vational studies aimed at US imaging of malignant thy-
roid nodules [12]. However, the non-uniformity of 
methodologies applied within this compilation and a 
failure to correlate US characteristics with specific his-
totypes of thyroid cancer are striking limitations. US 
characteristics of benign thyroid nodules have likewise 
been described and compared with those of malignant 
lesions [13, 14], but benign nodules in these studies were 
confirmed solely by biopsies and could not be profiled 
histologically.

In our investigation, we used the same US methodology 
for all patients examined. Nodules were eligible only if 
histologic classifications were available. Our results were 
also based on equivalent patient numbers to avoid sam-
pling bias, and we used these particular cases for training 
of the artificial neural network.

All benign nodules were histologically confirmed as 
follicular adenomas. Because follicular adenomas and 
follicular carcinomas are alike in macroscopic architec-
ture, differentiation by way of US may be problematic [4, 
15]. Indeed, US characteristics of FTCs and FTAs were 
similar in our hands. Yet, the same was true of a large, 
recently reported meta-analysis [15], where the most reli-
able (though often absent) means of distinguishing FTCs 
from FTAs was tumor protrusion. On the other hand, we 
determined that FTCs surpassed FTAs in mean tumor 
volume, a finding substantiated by others [16–18]. FTCs 
were also classifiable by EU TI-RADS in 24% of cases in 
our series. This was the highest value among groupings 
of malignant lesions, and the neural network was able 
to discriminate between FTCs and FTAs with moderate 
accuracy (0.69).

US characteristics of MTCs and PTCs were largely 
identical, too. With exception of TTW configuration 
(confined to PTCs), the vast majority of MTCs and PTCs 
appeared hypoechogenic, demonstrating calcifications 
in ~ 50% of cases. Consequently, the neural network was 
vastly less accurate in MTC vs. PTC (0.59) than in MTC 
vs. FTA (0.98) determinations. The findings of Liu [19] 
seem to corroborate the observed link between TTW 
shape and PTCs, confirming significantly more PTCs (vs. 
MTCs) with TTW shapes. Calcifications were detectable 
in ~ 50% of each group, but MTCs were larger than PTCs. 
Only tumor diameters were provided, thus prohibiting a 
direct comparison of mean tumor volumes.

In the present study, PTCs and FTAs again shared 
many US characteristics. Ill-defined contours were iden-
tified in both (PTCs, 51%; FTAs, 32%), as were calcifi-
cations (PTCs, 46%; FTAs, 14%). Only TTW shape was 
reliably diagnostic of PTC. In comparing US characteris-
tics of PTCs and benign nodules, Fang et al. [3] detected 
ill-defined margins and calcifications in significant pro-
portions of PTCs and benign lesions, and there were 
benign lesions with TTW shapes. However, this was a 
heterogeneous group comprised of nodular goiters, ade-
nomas, and nodules in Hashimoto´s thyroiditis.

As presently tested, the power of our artificial neural 
network to discriminate among thyroid nodules through 
US characteristics seemed dependent on histologic fea-
tures. Although distinguishing MTC from FTA was cor-
rect in most instances, less success was afforded for MTC 
vs. PTC. Because MTCs and PTCs frequently share US 
characteristics, this implies some degree of macroscopic 
consistency. The network’s capacity to correctly discern 
benign and low-risk nodules from those of intermedi-
ate or high risk was similarly a function of histology. For 
MTCs, the discrimination rate was fairly high, whereas 
FTAs showed the lowest rate. This possibly explains the 
rather high classification rate for EU TI-RADS 4/5 in 
benign nodules.



Page 8 of 9Cordes et al. Thyroid Research           (2023) 16:25 

Untile today, most AI applications in thyroid disease 
have focused on estimation of the malignancy risk of 
nodules [20]. In a retrospective study of follicular thy-
roid nodules, Xu et al. achieved an accuracy of 0.71 for 
discriminating between benign and malignant lesions by 
neural network analysis [21]. Hence, the potential benefit 
of this approach in helping radiologists separate FTCs 
from nodules poorly distinguishable by US was duly 
illustrated. Recently, a large meta-analysis examined the 
diagnostic utility of CNN analytics in classifying indeter-
minate thyroid nodules as benign or malignant through 
US imaging [22]. This undertaking encompassed 75 
studies of > 46,000 nodules. Ultimately, CNN (sensitiv-
ity, 0.85; specificity, 0.82) and radiomic (sensitivity, 0.87; 
specificity, 0.84) analyses compared favorably, underscor-
ing the high-performance capability of machine learning 
procedures in classifying thyroid nodules.

There are inherent limitations of this study to acknowl-
edge. Its retrospective and single-center design as well 
as the limited number of patients perhaps diminished 
the statistical power of our results. We included only 
those thyroid tumors from our database that were clearly 
encoded, and only surgically treated patients at our facil-
ity with available pathologic reports were considered. For 
image segmentation we used a visual approach. This pro-
cess can be very subjective and prone to inter and intra-
observer variations. However, an observer adherent bias 
may have reduced the performance of our nodule clas-
sification by artificial neural network analysis. Further-
more, the various protocols applied were clinically based 
and non-standardized, and the small number of patients 
involved (not perfectly matched) may have introduced 
significant outcome bias. The major limitation of our 
study might be that the number of test data was small. 
Therefore, we recommend the training of the neural net-
work for future studies with larger data sets. Finally, we 
used a concise rather than comprehensive neural net-
work model, requiring some simplification of output 
functions.

Conclusions
Our data indicate that some MTCs, PTCs, FTCs, and 
FTAs have distinctive sonographic characteristics. How-
ever, a significant overlap of these characteristics may 
impede an explicit classification. Further prospective 
investigations involving larger patient and nodule num-
bers and multicenter access should be pursued to deter-
mine if neural networks of this sort are beneficial, helping 
to classify neoplasms of the thyroid gland.
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