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Abstract
Background Being critical for brain development and neurocognitive function thyroid hormones may have an effect 
on behaviour and brain structure. Our exploratory study aimed to delineate the influence of mutations in the thyroid 
hormone receptor (TR) ß gene on brain structure.

Methods High-resolution 3D T1-weighted images were acquired in 21 patients with a resistance to thyroid hormone 
ß (RTHß) in comparison to 21 healthy matched-controls. Changes in grey and white matter, as well as cortical 
thickness were evaluated using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI).

Results RTHß patients showed elevated circulating fT4 & fT3 with normal TSH concentrations, whereas controls 
showed normal thyroid hormone levels. RTHß patients revealed significantly higher scores in a self-rating 
questionnaire for attention deficit hyperactivity disorder (ADHD). Imaging revealed alterations of the corticospinal 
tract, increased cortical thickness in bilateral superior parietal cortex and decreased grey matter volume in bilateral 
inferior temporal cortex and thalamus.

Conclusion RTHb patients exhibited structural changes in multiple brain areas. Whether these structural changes are 
causally linked to the abnormal behavioral profile of RTHß which is similar to ADHD, remains to be determined.

Keywords Resistance to thyroid hormone, voxel based morphometry, Diffusion tensor imaging, Thyroid hormone 
receptor beta
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Introduction
Thyroid hormone levels and transporter proteins influ-
ence the development of the human brain. Brain devel-
opment is mediated by thyroid hormone action [1]. 
Irregularities in balance of thyroid hormones at precise 
developmental timings can lead to somatic and cognitive 
changes [2]. We have previously shown that a period of 
only several weeks duration of induced hyper- or hypo-
thyroid states influences the function and structure of the 
brain, without significant measurable somatic changes 
in parameters such as heartrate or blood pressure [3–6]. 
Moreover, hypothyroidism during adulthood induces 
morphological changes in the brain [7].

Thyroid hormones regulate developmental and physi-
ological processes, acting via nuclear, thyroid hormone 
receptors (TRa, TRb), to alter transcription of target 
genes. Mutations in receptor genes (THRB and THRA), 
cause syndromes of Resistance to Thyroid hormone 
(RTHb, RTHa) [8, 9], whose phenotypes differ due to the 
differential expression of TR isoforms in tissues (TRα1: 
central nervous system, myocardium, skeletal muscle, 
bone and gastrointestinal tract; TRβ1: liver, kidney; 
TRβ2: hypothalamus, pituitary, cochlea, retina) [10].

RTHβ, due to heterozygous mutations in THRB, is a 
relatively uncommon disorder with over 800 families 
with 200 different receptor mutations being recorded 
to date [11]. Due to impaired function of the TRβ2 iso-
form expressed in the hypothalamus and pituitary [12], 
normal negative feedback regulation of TSH by thyroid 
hormones is perturbed, resulting in raised circulating 
free thyroid hormones (fT4, fT3) with non-suppressed 
TSH concentrations [10]. Due to differential distribu-
tion of TR subtypes, RTHβ patients exhibit symptoms 
reflecting hypo- and hyperthyroid states of specific tis-
sues [10]. Typical phenotypes in RTHβ include goiter, 
resting tachycardia, recurrent ear infections in childhood 
causing hearing loss, altered photoreceptor function and 
attention-deficit hyperactivity disorder (ADHD) [13–15]. 
Indeed, previous studies suggest that ADHD is the main 
neurocognitive abnormality in RTHβ, with approxi-
mately half of RTHβ patients exhibiting an ADHD-like 
phenotype [16–19].

The differential tissue distribution of TRs suggests 
that RTHß patients might show abnormalities in brain 
structure, which, in turn, might be related to behavioural 
changes. Accordingly, in this study, changes in grey mat-
ter volume using voxel based morphometry, were ana-
lyzed [20, 21]. Previous studies of patients in hyper- or 
hypothyroid states [3, 7, 22, 23], have revealed structural 
changes, suggesting that this method would also reveal 
changes in RTHß. Measurement of cortical thickness has 
also highlighted structural changes in thyroid disease [24, 
25].

An earlier publication had suggested that male RTHb 
patients exhibit multiple Heschl’s transverse gyri in the 
primary auditory cortex [26], so we sought to verify these 
findings in the current study.

Thyroid hormones have been shown to regulate 
myelination of neurons [1]. Such changes in myelination 
in brain white matter are reflected in different param-
eters gleaned from diffusion tensor imaging (DTI). For 
example, reductions of fractional anisotropy (FA) have 
been found in hypothyroid patients in the corticospinal 
tract, the posterior limb of the internal capsule, uncinate 
fasciculus, and inferior longitudinal fasciculus [27]. Our 
exploratory study aimed to delineate the influence of 
mutations in the thyroid hormone receptor (TR) ß gene 
on brain structure.

Materials and methods
Subjects
In total forty-two subjects were recruited; twenty-one 
RTHβ subjects (mean age 39 y, SD 15.0, 12 women) were 
matched with 21 healthy controls (mean age 38 y, SD 
14.0, 12 women, from Lübeck, Germany). The partici-
pants in this study are unselected cases of RTHb, diag-
nosed in Cambridge following referral to this centre for 
investigation of discordant thyroid function (raised thy-
roid hormones, non-suppressed TSH). The investigation 
of all participants took place at the University Medical 
Centre Schleswig-Holstein, Campus Lübeck, Germany. 
The patients carried the following heterozygous TRß 
mutations: R320H (n = 5), R438H (n = 4), R429Q (n = 3), 
R383C (n = 2), M310V (n = 1), G345C (n = 1), P453S 
(n = 1), R243W (n = 1), T277I (n = 1), R338W (n = 1), 
E460K (n = 1). Mutations were maternally (n = 12) or 
paternally (n = 3) inherited or occurred de novo (n = 6). 
Medication in single patients included thyroxine for coin-
cident autoimmune hypothyroidism (n = 1), propranolol 
in reduced dosage at initial referral, alfacalcidol for post-
surgical hypoparathyroidism and atenolol for high blood 
pressure. All patients were screened for general health, 
drug abuse and medical comorbidities, with evaluation 
of thyroid status (TSH, fT4, fT3), and fasting lipid pro-
files (Total, LDL and HDL cholesterol). All patients were 
examined by an endocrinologist. Their structural brain 
images were evaluated and approved to be normal by a 
neuroradiologist. All subjects were right-handed.

Blood parameters were analysed on serum (transported 
at minus 80) in Cambridge with TSH, fT3 and fT4 being 
measured by Advia Centaur (Siemens) as described pre-
viously [28]. The reference ranges of hormone measure-
ments were as follows: fT3 3.5–6.5 pmol/l, fT4 10–19.8 
pmol/l and TSH 0.35–5.5 mU/l.
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Attention deficit analysis
We used the Adult ADHD Self-Report Scale (ASRS-v1.1) 
[29], composed of 18 questions describing typical symp-
toms of ADHD consistent with the Diagnostic and Statis-
tical Manual of Mental Disorders (DSM) criteria. The test 
asks for typical symptoms (i.e. deficits in attention, con-
centration), impairments (i.e. at work, school or in family 
settings) and history (i.e. were the symptoms also present 
in childhood). Additionally, the ADHD Rating Scale-IV 
was used, consisting of two subscales including 9 items 
scaling inattention and 9 items regarding hyperactivity 
impulsivity [29]. To test for group differences indepen-
dent t-test per ADHD Rating Scale-IV subscales will be 
used.

MRI data acquisition and analysis
Structural MR imaging was performed at the CBBM Core 
Facility Magnetic Resonance Imaging using a 3-T Sie-
mens Magnetom Skyra scanner equipped with a 64-chan-
nel head-coil. Structural images of the whole brain were 
recorded using a 3D T1-weighted MP-RAGE sequences 
were acquired (TR = 1900 ms; TE = 2.44 ms; TI = 900 ms; 
flip angle 9°; 1 × 1 × 1 mm3 resolution; 192 × 256 × 256 
mm3 field of view; acquisition time 4.5  min). Diffusion-
weighted data were recorded using a 64-direction DTI 
sequence (Single-Shot EPI sequence, 70 slices, TR = 6100 
ms, TE = 116 ms, FOV 244 × 244 mm2, voxel size 1 × 1 × 2 
mm3, flip angle 90, b-value 1500 s/mm2, one b0 (without 
diffusion weighting) image at the beginning and 4 b-zero 
images at the end of the sequence). Analysis was cor-
rected for age and gender.

Diffusion tensor imaging
Diffusion tensor imaging (DTI) is an imaging technique 
enabling to non-invasively measure white matter changes 
in the central nervous system. Preprocessing including 
eddy correction and rotation of the vector definitions was 
performed using the FMRIB Software Library [30]. The 
resulting tensor images were transformed to DTI-ToolKit 
data format (http://www.nitrc.org/projects/dtitk/) and 
registered to the IIT tensor template provided by the IIT 
atlas [31] combining rigid, affine, and diffeomorphic reg-
istration steps. Based on the spatially normalized tensor 
images DTI-ToolKit was also taken to calculate individ-
ual FA maps. To test for group differences SPM12 tool-
box was used to perform a two-sample t-test with age 
as covariate. Statistic images were assessed for cluster-
wise significance using a cluster-defining threshold of 
P = 0.001; the 0.05 FWE-corrected critical cluster size was 
275.

Voxel based morphometry
Voxel-based morphometry (VBM) is a technique to anal-
yses structural changes of the brains grey matter using 

T1-weighted MR images. It measures differences of grey 
matter by a voxel-wise comparison of multiple brain 
images. VBM analysis was evaluated in the whole brain, 
carried out using Statistical Parametric Mapping 12b 
(SPM, http://www.fil.ion.ucl.ac.uk/spm) and Computa-
tional Anatomy Toolbox (http://www.neuro.uni-jena.de/
cat/; version 12.6, 1445) in Matlab R2019b. Preprocess-
ing of the data comprised tissue segmentation and spatial 
registration using DARTEL, removal of inhomogene-
ities and noise, global intensity normalization and spa-
tial smoothing (12  mm FWHM Gaussian Kernel). Total 
intracranial volume (TIV) was also calculated. After pre-
processing a two-sample t-test was computed as group 
statistic for every voxel, whereby age and intracranial vol-
ume were considered as confounding factors. Since we 
found no significant differences when applying a correc-
tion for multiple testing, we considered the results also 
at an uncorrected p-value of 0.001, which is a common 
method to explore patient data. Due to an increase of the 
alpha error it has to be acknowledged, though, that this 
approach may produce false positive results.

Cortical thickness
Cortical thickness analysis measures the width of grey 
matter in the human cortex. The analysis of cortical 
thickness was also performed with SPM12 and the CAT 
toolbox using the algorithm described by Dahnke et al. 
[32]. Based on the VBM preprocessing steps the central 
surface and the cortical thickness was estimated using 
a projection based thickness approach [32]. Initial sur-
face reconstruction was followed by repair of topologi-
cal defects and surface refinement resulting in the final 
central mesh [33]. For statistical analysis we followed 
the program’s recommendation using a 15  mm FWHM 
Gaussian kernel for spatial smoothing. We calculated a 
two-sample t-test with age as covariate. To correct for 
multiple comparisons at cluster level = 633 a threshold 
of p = 0.05 (FWEc) and a cluster defining threshold of 
p = 0.001 was applied.

Relationship brain structure and attention deficit
To test for a correlational relationship between struc-
tural changes and Attention deficit test scores regions of 
interest (ROIs) will be defined by the clusters resulting 
from the group comparisons. Mean FA and VBM scores 
extracted from these clusters will be correlated with test 
scores which also show a significant difference between 
groups. Since CAT toolbox does not allow for the indi-
vidual definition of ROIs mean values will be extracted 
from the atlas definition in which the significant group 
difference was observed. The atlas definition used here 
was the Desikan-Killiany Atlas. Correlations were cal-
culated using spearman’s rho. Since the correlational 

http://www.nitrc.org/projects/dtitk/
http://www.fil.ion.ucl.ac.uk/spm
http://www.neuro.uni-jena.de/cat/
http://www.neuro.uni-jena.de/cat/
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analysis was exploratory we did not correct for multiple 
comparisons.

Analysis of Heschl’s gyri
The sizes of Heschl’s gyri were measured manually, the 
brain region was selected by specialists voxel by voxel. 
The program mricron (https://www.nitrc.org/projects/
mricron [34] was used to define the region layer-by-
layer with manual tracing using a mouse-guided cursor. 
Heschl’s gyri analysis was performed in a blinded fash-
ion, first in independent sessions, followed by a subse-
quent combined session by two different examiners (one 
neurologist, one neuroscientist). In line with previous 
reports number of Heschl’s gyri was classified into typi-
cal (one gyrus) and atypical (multiple gyri) [26, 35, 36]. 
Prior to performing the analyses, the examiners agreed to 
the procedures during a joint session using sample brain 
images. Differences between the number of typical and 
atypical Heschl’s gyri were statistically tested using a chi 
squared test.

Results
Circulating thyroid hormone concentrations
Mean TSH was shown to be within the normal range 
in both RTHβ patients and control subjects. Both fT4 
(RTHβ: Mean 28.4 pmol/L, SD 5.5 pmol/L. Controls: 
Mean: 14.6 pmol/L, 1.6 pmol/L. P < 0.001, two-sample 
t-test) and fT3 (RTHβ: Mean 8.6 pmol/L, SD 1.6 pmol/L. 
Controls: 5.1 pmol/L, SD 0.5 pmol/L. P < 0.001, two-
sample t-test) concentrations were significantly elevated 
in RTHβ patients, but were within the normal range in 
control subjects.

Clinical symptoms
All subjects were examined by an endocrinologist and a 
neurologist with additional training in psychiatry. Out of 
the 21 RTHβ patients, one showed tachycardia, whereas 
eleven reported occasional palpitations. In the clinical 
history, 9 patients reported difficulties in concentrat-
ing and 12 reported anxiety episodes. Other signs and 
symptoms of hyperthyroidism (increased perspiration, 
peripheral tremor, proximal myopathy, increased stool 
frequency, weight loss, changes in menstrual cycle) 
were not present. None of the patients exhibited fea-
tures of hypothyroidism (e.g. cold intolerance, constipa-
tion, weight gain, dry skin, hair loss, bradycardia, delayed 
relaxation of tendon reflexes, carpal tunnel syndrome).

Attention deficit analysis
The self-rating questionnaires for ADHD I and II 
revealed significantly higher scores in the RTHβ group 
(ADHD I mean = 95.7 (9.1), ADHD II mean = 36.1 (2.3)) 
in comparison to controls (ADHD I mean = 60.6 (4.8), 
ADHD II mean = 24.1 (1.7); ADHD I: RTHβ vs. controls 

t(36)=|3.31|, p = 0.002; ADHD II: RTHβ vs. controls 
t(36)=|4.16|, p = 0.0018).

Imaging results
Tractography via diffusion tensor imaging (DTI) revealed 
significantly higher FA in the corticospinal tract (CST) 
in RTHß patients (FWEc 0.05, k = 275) (see Fig.  1; 
Table  1  A). In the RTHβ group, superior parietal corti-
cal thickness was increased bilaterally (FWE(p < 0.05), 
k = 587) (see Fig. 2 and Table 1B).

Voxel-based morphometry (VBM) revealed decreased 
grey matter volume (GMV) bilaterally in the inferior 
temporal cortex and the thalamus and in the right supe-
rior frontal orbital gyrus in RTHβ subjects. Increase in 
GMV was shown in left precuneus and right middle fron-
tal gyrus in RTHβ subjects. VBM results were based on 
an uncorrected level (p[unc.] = 0.001, k = 100) (see Fig. 3; 
Table 1 C).

Analysis of Heschl’s gyri showed no statistical dif-
ference when comparing patients and controls 
(Chi2(2) = 4.40; p = 0.11). Similar to published literature 
[26], we also checked for gender differences in this struc-
tural parameter, finding that women in the RTHβ-group 
had multiple Heschl’s gyri less often than female controls 
(Chi2(2) = 7.6, p = 0.02, see Table  2); for men there was 
no significant difference in Heschl’s gyri (Chi2(2) = 0.47, 
p = 0.78).

Relationship brain structure and attention deficit analysis
With regard to VBM analyses the cluster located in the 
right midfrontal cortex was significantly correlated with 
ADHD I (rho = 0.66, p = 0.002) and ADHD II (rho = 0.58, 
p = 0.009) scores in the RTHβ-group, whereas the control 
group showed no significant correlation. Furthermore, in 
the RTHβ-group, decreases in FA values in the right CST 
were marginally correlated with the ADHD I (rho=-0.4, 
p = 0.091) and ADHD II (rho = 0.41, p = 0.083) scores. In 
contrast, FA values in the left CST were positively cor-
related with ADHD II scores (rho = 0.43, p = 0.046) in the 
control group (see Fig. 4). Analysis of the cortical thick-
ness ROIs revealed no significant relationship.

Discussion
As anticipated, RTHß patients showed significant differ-
ences in both grey and white matter compared to normal 
control participants and these changes will be considered 
in further detail as follows.

Diffusion tensor imaging showed that FA in the cor-
ticospinal tract differed in RTHß versus control subjects. 
The corticospinal tract supports motor control of the spi-
nal cord and voluntary movement [37]. It is known that 
thyroid hormones regulate myelin formation [1], there-
fore it can be speculated that a changed FA in RTHß 
can be due to their local hyperthyroid state in the brain 

https://www.nitrc.org/projects/mricron
https://www.nitrc.org/projects/mricron
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Fig. 2 Results of cortical thickness analysis RTHβ patients > controls superimposed on the Freesurfer Average template. Voxels exceeding the statistical 
threshold of p < 0.05 (FWEc, cluster defining threshold p = 0.001, k = 633) are colour-coded. Significant changes were found in the superior parietal cortex. 
Colour intensity represents t-values at voxel level

 

Fig. 1 Significant FA differences between healthy controls and RTHß patients displayed onto the average T1 image in IIT atlas standard space (voxel size 
1 mm). Top row shows the significant cluster of the comparison healthy controls > RTHß in the left hemisphere, bottom row the significant cluster for the 
same comparison in the right hemisphere (FWEc 0.05, k = 275). Additionally depicted in blue is the corticospinal tract according to the IIT atlas definition

 



Page 6 of 10Rogge et al. Thyroid Research           (2023) 16:34 

influencing white matter tissue and myelin formation. 
However, the functional relevance of these changes in 
the corticospinal tract remains to be explored using (for 
example) transcranial magnetic stimulation and sensitive 
measures of motor performance.

Changes in white matter have been recorded in hyper-
thyroid patients with thyroid opthalmopathy [38] and 
also in patients with Resistance to Thyroid Hormone due 
to mutations in TRa [39]. Thus, more studies are needed 
to explore the influence of TH on brain white matter.

Voxel based morphometry revealed a decrease of grey 
matter volume bilaterally in the inferior temporal cor-
tex and the thalamus. The thalamus is a key relay hub, 
making multiple connections to cortical and subcorti-
cal regions. It is also known to play an important role in 
selective attention, visual and auditory information [40]. 
The functional significance of these thalamic changes 
remains to be explored.

The temporal lobe and its associated networks are 
involved in multiple cognitive domains, including audi-
tory, vision, language, memory, and semantic processing 
[41].

This structural observation is particularly interesting, 
since our RTHß patients showed an ADHD-like phe-
notype, which characteristically involves neuropsycho-
logical deficits. In addition, heterozygous RTHb patients 
exhibit altered retinal photoreceptor function and sensi-
tivity of color perception [15], and this may correlate with 
the fact that the inferior temporal cortex plays a key part 
in the visual pathway, including color perception [42].

In a previous study [3] we have analyzed healthy par-
ticipants with experimentally-induced thyrotoxicosis, 
revealing an increase of grey matter volume in the pos-
terior part of the cerebellum and a decrease of grey mat-
ter volume in the anterior part of the cerebellum. While 
these observations clearly differ from findings in this 

Fig. 3 Results of the VBM analysis. Statistical maps are superimposed on a T1-weighted 152-MNI template. Voxels exceeding the statistical threshold of 
p(unc.) = 0.001 and a cluster threshold of k = 50 are shown in red to yellow (contrast controls > RTHβ patients) and blue to green (RTHβ > control). Colour 
intensity represents t-values at voxel level
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study, it has to be kept in mind that the effects of bio-
chemical hyperthyroidism in RTHß patients may be 
more complex, depending on whether particular brain 
regions are in a relatively hypothyroid or hyperthyroid 
state, depending on whether they express mutant TRß 
or normal TRα. Experimentally-induced thyrotoxicosis 
also leads to an increased connectivity in temporal lobe 
structures, caused by an increased connectivity to the 
cognitive control network [43]. Such increased connec-
tivity supports a role for thyroid hormones in regulating 
paralimbic structures, with increased degree central-
ity in the temporal pole being correlated with changes 
in observed depression scores [43]. This may facilitate 

prefrontal control over limbic areas, possibly explaining 
the successful use of thyroid hormones as an augmenta-
tion therapy for depression.

Heschl’s gyrus analysis showed no difference among 
groups regarding number of gyri. Whereas one previous 
study had shown an increased number of gyri in RTHß 
men [26], this was not replicated by our results. Instead, 
we found less multiple Heschl’s gyri in RTHß women. We 
conclude that there is no substantial influence of RTHß 
on Heschl’s gyrus morphology in our cohort of patients.

Cortical Thickness was increased in superior parietal 
cortex bilaterally in the RTHß group. It is well-known 
that the parietal cortex is involved in sensory, motor, and 
cognitive functions, especially regarding space-based and 
feature-based attention functions and working mem-
ory [44]. The parietal cortex is involved in the attention 
network, parietal cortices generate attention-related 
modulatory signals and parietal lesions can lead to pro-
found attentional deficits, including visuo-spatial neglect, 
hereby preventing directing attention contralesionally 
[45].

ADHD is known to be associated with impairments in 
attention and with changes in fronto-parietal networks 
[46], which is relevant because RTHß patients, including 
participants in the current study, exhibit an ADHD-like 
phenotype [16–19]. Indeed, increased parietal cortical 
thickness has also been shown in adult subjects with con-
ventional ADHD [47, 48] whereas reduced cortical thick-
ness was seen in children and adolescents with ADHD 

Table 1 Peak voxel coordinates
A) FA maps control > RTHβ
location hemisphere cluster Size peak t-value x y z

corticospinal tract left 567 6.07 110 124 99

corticospinal tract right 275 4.31 145 137 108

4.08 139 134 101

B) Cortical Thickness
location hemisphere cluster Size peak t-value x y z

superior parietal cortex left 720 4.29 18 -89 25

superior parietal cortex right 633 4.15 -27 -90 32

-20 -87 26

 C) Voxel based morphometry
location hemisphere cluster Size peak t-value x y z

control > RTHβ
inferior temporal left 162 4.08 -50 -12 -28

front sup orb right 337 4.04 21 32 -14

inferior temporal right 174 3.80 57 -6 -40

thalamus left 94 3.58 -6 -15 -2

thalamus right 3.50 6 -16 -2

RTHβ > control
precuneus left 247 4.65 -8 -45 78

frontal mid right 275 4.42 51 34 34
For A: All values cluster corrected FWEc (p = 0.001, k = 275)

For B: All values cluster corrected FWEc = 0.05 (p = 0.001, k = 633). Coordinates and labels are according to the Desikan-Killiany DK40 atlas

For C: All values cluster uncorrected p = 0.001, k = 50. Coordinates in MNI Space, labels according to the AAT3.

Table 2 Contingency Table Classification Heschl’s Gyrus
Sex Group Heschl Total

aa at tt

Female Control 2 6 2 10

RTHβ 0 2 8 10

Total 2 8 10 20

Male Control 2 3 4 9

RTHβ 1 4 4 9

Total 3 7 8 18

Total Control 4 9 6 19

RTHβ 1 6 12 19

Total 5 15 18 38
Frequencies of atypical bilateral (aa), atypical unilateral (at), or typical bilateral 
(tt) number of Heschl’s gyri. One gyrus is considered as typical (t), more than 
one as atypical (a)
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[49–51]. Since our study has documented increased pari-
etal cortical thickness in RTHb, it is tempting to postulate 
that this structural change may be linked to attentional 
deficits and ADHD-like phenotype in the disorder. With 
the knowledge that hypothyroidism during development 
can also affect cortical thickness in various brain regions 
[25], it is conceivable that resistance to thyroid hormone 
action which is also a relative hypothyroid state, could 
have contributed to this morphological change.

Limitations of our study include the relatively small 
sample size and thus reduced power to detect subtle 
changes in brain structure. Additionally, the study pop-
ulation was heterogeneous, as RTHb patients from UK 
were matched with healthy controls from Germany, with 
a possibility of confounding due to socio-economic and 
educational differences between the two groups. Nev-
ertheless, we maintain that our study contributes new 
knowledge about brain structure in this disorder.

Conclusion
RTHß leads to structural brain changes in cerebral white 
matter and grey matter. In particular, we found changes 
in parietal cortical thickness in RTHß. Whether these 
changes are causally linked to the ADHD-like phenotype 
seen in RTHß patients, remains to be determined.
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