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Abstract 

Background  Our previous study demonstrated that long intergenic noncoding RNA 02454 (LINC02454) may act 
as an oncogene to promote the proliferation and inhibit the apoptosis of papillary thyroid cancer (PTC) cells. This 
study was designed to investigate the mechanisms whereby LINC02454 is related to PTC tumorigenesis.

Methods  Thyroid cancer RNA sequence data were obtained from The Cancer Genome Atlas (TCGA) database. 
Weighted gene coexpression network analysis (WGCNA) was applied to identify modules closely associated with PTC. 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was used to identify the key 
pathways, and the maximal clique centrality (MCC) topological method was used to identify the hub genes. The 
Gene Expression Profiling Interactive Analysis (GEPIA) database was used to compare expression levels of key genes 
between PTC samples and normal samples and explore the prognostic value of key genes. The key genes were fur-
ther validated with GEO dataset.

Results  The top 5000 variable genes were investigated, followed by an analysis of 8 modules, and the turquoise 
module was the most positively correlated with the clinical stage of PTC. KEGG pathway analysis found the top two 
pathways of the ECM − receptor interaction and MAPK signaling pathway. In addition, five key genes (FN1, LAMB3, 
ITGA3, SDC4, and IL1RAP) were identified through the MCC algorithm and KEGG analysis. The expression levels 
of the five key genes were significantly upregulated in thyroid cancer in both TCGA and GEO datasets, and of these 
five genes, FN1 and ITGA3 were associated with poor disease-free prognosis.

Conclusions  Our study identified five key genes and two key pathways associated with LINC02454, which might 
shed light on the underlying mechanism of LINC02454 action in PTC.
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Introduction
Thyroid cancer is the most common endocrine cancer 
worldwide, with an estimated 44 020 cases and 2170 
deaths in 2024 [1]. Thyroid cancer ranks ninth in global 
cancer incidence [2]. Thyroid cancer exhibits a distinct 
gender predilection, with females accounting for approxi-
mately 75% of all cases [2, 3]. Additionally, the disease can 
occur across a wide age spectrum, though the median age 
at diagnosis is the early 50s. Notably, thyroid cancer is 
the most prevalent malignancy among adolescents and 
young adults aged 16–33 years [4]. Approximately 84% of 
thyroid cancer cases are papillary thyroid cancer (PTC), 
with an estimated 5-year survival of 98.5% [5]. However, 
aggressive variants of PTC and advanced TNM stage can 
still threaten the patients’ quality of life. Thirty percent 
of thyroid cancers will not carry any of the known muta-
tions involved in thyroid cancer initiation and progres-
sion (RAS, RET/PTC, or BRAF (V600E) mutations) [6]. 
Thus, it is important to identify novel molecular path-
ways associated with the progression and prognosis of 
thyroid cancer.

Recently, long noncoding RNAs (lncRNAs) have been 
found to have a key role in cancer development and pro-
gression including thyroid cancer. This has led investiga-
tors to focus on lncRNAs as diagnostic and prognostic 
thyroid cancer biomarkers. For example, Gugnoni et  al. 
found that Linc00941 was upregulated in PTC, and its 
expression level was correlated with aggressive features in 
PTC patients [7]. Furthermore, recent work by Guo et al. 
revealed that lncRNA-MIAT was overexpressed in PTC 
tissues and impacted cellular proliferation, migration and 
invasion by regulating by sponging miR-150-5p [8]. Our 
previous lncRNA expression microarray profiling study 
reported that many lncRNAs were aberrantly expressed 
in PTC tissues. Among them, a novel long intergenic 
noncoding RNA 02454 (LINC02454) was markedly over-
expressed in PTC tissues. Functional studies in PTC 
cells demonstrated that LINC02454 impacted cellular 
apoptosis and proliferation. Moreover, we found that 
high LINC02454 expression level was associated with 
advanced clinical stage and poor disease-free survival 
in patients with PTC [9]. Furthermore, Cao et  al. dem-
onstrated that upregulation of LINC02454 cis-regulated 
HMGA2 expression by facilitating CREB1 phosphoryla-
tion and nuclear translocation, and HMGA2 promoted 
LINC02454 expression by binding its promoter, thereby 
accelerating thyroid carcinoma colony formation, migra-
tion, invasion, and EMT [10]. Current research on the 
functional implications of LINC02454 in malignancies 
other than PTC is limited. Chen et  al. have shown that 
LINC02454, transcriptionally regulated by EGR1, inter-
acts with the CCT complex to modulate TERT expres-
sion, maintaining telomere homeostasis and promoting 

oncogenesis in head and neck squamous cell carcinoma 
[11]. In addition, LINC02454 was identified as a crucial 
regulator of laryngeal squamous cell carcinoma progres-
sion, promoting cell proliferation, migration, and inva-
sion. Notably, LINC02454 protected laryngeal squamous 
cell carcinoma cells from copper-induced mitochondrial 
damage, suggesting its potential as a therapeutic target 
[12]. However, the possible mechanism of LINC02454 in 
PTC remains unknown.

Weighted correlation network analysis (WGCNA) 
can be used for finding clusters (modules) of highly cor-
related genes, for summarizing such clusters using the 
module eigengene or an intramodular hub gene (genes 
with high connectivity in the module), for relating mod-
ules to one another and to external sample traits (using 
eigengene network methodology), and for calculating 
module membership measures. Correlation networks 
facilitate network-based gene screening methods that can 
be used to identify candidate biomarkers or therapeutic 
targets. These methods have been successfully applied in 
various biological contexts, e.g. cancer, mouse genetics, 
yeast genetics, and analysis of brain imaging data. Thus, 
in the present study, we sought to further explore how 
the key LINC02454-related pathways and key genes are 
involved in thyroid cancer oncogenesis by weighted gene 
coexpression network analysis (WGCNA).

Material and methods
Data source and preprocessing
Thyroid cancer RNA sequence expression data together 
with clinical feature data were obtained from The Can-
cer Genome Atlas database (TCGA, https://​portal.​gdc.​
cancer.​gov/). The raw sequencing data were normal-
ized using the voom function of the limma package in R. 
GSE150899 was collected from GEO (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/) to validate the differential expression 
of five key genes.

WGCNA network construction and module identification
The “WGCNA” R package was used to explore thyroid 
cancer-related modules with the dataset obtained from 
TCGA through the following steps: (i) The median abso-
lute deviation (MAD) in the expression level of each gene 
was calculated, top 5000 genes with highest MAD were 
selected for further analysis. (ii) The hclust function of 
R was used to perform cluster analysis on these sam-
ples. (iii) Soft-thresholding was performed for network 
topology construction, and the appropriate power value 
was used to construct the network. (iv) Hierarchical 
clustering and the dynamic tree cutting algorithm were 
used to detect gene coexpression modules, which were 
given different colors for visualization. (v) Module-trait 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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associations were examined using the Pearson correlation 
between the module eigengene and the clinical traits.

Functional and pathway enrichment analysis
The clusterProfiler R package was utilized to perform 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis of 
candidate genes obtained from WGCNA. Pathways with 
q value < 0.2 and p value < 0.05 were defined as signifi-
cantly enriched.

Co‑expressed genes network construction and key gene 
identification
The coexpressed genes pairs in modules were filter with 
threshold of 0.1 according to weight. The coexpressed 
network was constructed and visualized by Cytoscape 
software (version 3.6.1). Hub genes were identified by 
MCC topological analysis methods using the Cytoscape 
plugin cytoHubba. The key genes were defined as the 
intersection among hub genes identified by MCC in 
whole coexpression network, LINC02454 coexpressed 
genes in network and genes in top10 significantly 
enriched KEGG pathways.

Validation of key genes in the GEPIA database and GEO 
dataset
The online database Gene Expression Profiling Interac-
tive Analysis (GEPIA, http://​gepia.​cancer-​pku.​cn/) was 
used to compare expression levels of key genes between 

thyroid cancer samples and normal samples based on 
TCGA normal and GTEx data. ANOVA was used to ana-
lyze the differentially expressed genes, which were those 
with |log2FC| values > 1 and q values < 0.01. GEPIA was 
also applied to explore the prognostic value of key genes 
though disease-free survival (DFS) curves using the 
Kaplan‒Meier method with a 50% (median) cutoff and 
were compared by the log rank test. P values < 0.05 were 
considered statistically significant. The expression level of 
key genes was also checked in GEO dataset GSE150899.

All statistical analyses in this article were performed 
using R (4.1.10) and relevant R packages. P < 0.05 was 
considered significant. All asterisks in the text indi-
cate significance, with the corresponding relationships 
being p < 0.0001****, p < 0.001***, p < 0.01**, p < 0.05 *, and 
p > 0.05 ns (not significant).

Results
Data collection
The strategy of bioinformatics analysis is performed as 
shown in Fig.  1. A total of 502 thyroid cancer samples 
were obtained from the TCGA database. Clinical infor-
mation on thyroid cancer samples, such as sex, race, age, 
clinical stage and patient survival, was also complied. The 
boxplot displayed the normalized expression profile of 
502 thyroid cancer samples (Supplementary Fig. 1). GEO 
dataset GSE150899 was utilized to validate the expres-
sion of 5 key genes.

Fig. 1  Flow chart of this study design

http://gepia.cancer-pku.cn/
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WGCNA network construction
The top 5000 genes with highest MAD were used to con-
duct WGCNA. To ensure that the identified coexpres-
sion module were reliable, hierarchical cluster analysis 
was performed to remove potential outliers. As shown 
in Fig.  2, there was no abnormal sample. The scale free 
topology index achieved 0.85 when soft threshold power 
β was set to 5, and there was a relatively high average 
connectivity (Fig. 3). Thus, the constructed network con-
formed to the power-law distribution and was close to 
the real biological network. Finally, gene dendrograms 
were obtained using average linkage hierarchical clus-
tering. The dynamic tree cut yielded eight modules with 
corresponding colors (Fig. 4). The gene number per mod-
ule and corresponding colors are shown in Table 1.

Key module identification
To search for the most clinically relevant module, the 
relationships between the module eigengene and the 
clinical characteristics were depicted in a heat map 

(Fig. 5). It has been shown that the turquoise module was 
significantly correlated with the TMN stage, pathologic 
stage, lymph node count and positive lymph nodes of 
thyroid cancer. Table 1 showed that the turquoise mod-
ule consisted of most genes (1619). LINC02454 was right 
in the turquoise (Supplementary Table 1). Therefore, the 
turquoise module was selected for further functional 
enrichment analysis.

Key module functional enrichment analysis
A total of 1619 genes in the turquoise module were sub-
jected to functional enrichment analyses. The top ten 
terms were selected for visualization. GO analysis indi-
cated that the genes in the turquoise module were mainly 
enriched in reproductive structure development under 
biological processes, collagen − containing extracellu-
lar matrix under cellular component, and passive trans-
membrane transporter activity under molecular function 
(Fig.  6). The results of KEGG pathway analysis showed 
that the turquoise module regulated pathways included 

Fig. 2  Sample clustering to detect outliers. All the samples were in the clusters, all samples have passed the cuts
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ECM − receptor interaction, MAPK signaling pathway, 
and proteoglycans in cancer (Fig. 7). Therefore, turquoise 
module may be associated with thyroid tumorigenesis.

Key gene identification
To investigate the role of LINC02454 in thyroid cancer 
tumorigenesis, we constructed coexpression gene network 

Fig. 3  Analysis of network topology for various soft-threshold powers. The left panel shows the function of soft-threshold power on the scale-free 
topology fit index; the right panel displays the function of soft-threshold power on the mean connectivity

Fig. 4  Clustering dendrograms and color display of the co-expression network modules constructed by dissimilarity based on topological overlap. 
The dynamic tree cut yielded eight modules. Module colors are shown correspondingly
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for turquoise module. The network consisted of 1460 nodes 
and 61,672 edges (Supplementary Fig.  2), which included 
131 LINC02454-coexpressed genes (Supplementary 
Table 2, Fig. 8). 5 key genes (FN1, LAMB3, ITGA3, SDC4, 
and IL1RAP) were identified by intersecting these 131 
genes with the top 40 hub genes from the network (Supple-
mentary Table 3) identified by MCC method and genes in 
top 10 enriched KEGG pathways (Supplementary Table 4). 
Thus, these 5 key genes could be associated with the 
pathology of PTC and were selected for further analysis.

Key genes expression level and survival analysis
Based on the data from GEPIA and TCGA, we found that 
fibronectin 1 (FN1), laminin subunit beta 3 (LAMB3), 
integrin subunit alpha 3 (ITGA3), syndecan-4 (SDC4), 
and IL1 receptor-associated protein (IL1RAP) were sig-
nificantly overexpressed in thyroid cancer tissues com-
pared with normal thyroid tissues (P < 0.01) (Fig. 9). The 
aberrant expression of these five key genes were also 
seen in GEO dataset GSE150899 (Fig. 10). The prognos-
tic value of the 5 key genes were further investigated. As 
shown in Fig. 11A, PTC patients with high FN1 expres-
sion had significantly shorter DFS than those with 
low FN1 expression (P < 0.05). Likewise, high ITGA3 
expression in PTC patients was associated with poor 
DFS (P < 0.05) (Fig.  9C). No significant association was 
observed between the other three key genes and disease-
free survival (P > 0.05) (Fig. 11B, D and E).

Discussion
In the present study, we discovered the potential path-
ways and LINC02454-coexpressed genes via WGCNA, 
giving some clues about the underlying mechanisms of 
LINC02454 in PTC. The ECM − receptor interaction 

Table 1  The number of genes in the eight modules

Module colors Frequency

Turquoise 1619

Blue 1040

Grey 612

Brown 532

Yellow 365

Green 324

Red 316

Black 192

Fig. 5  Heatmap of module-trait relationships displaying correlations between module eigengenes and clinical characteristics. Numbers in the table 
correspond to the correlation coefficient and the p-value in bracket. The degree of correlation is illustrated with the color legend
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and MAPK signaling pathway were considered the 
most significant potential key pathways. We found 131 
LINC02454-coexpressed genes, of which FN1, LAMB3, 

ITGA3, SDC4, and IL1RAP were identified as key genes. 
Using the online GEPIA database, 5 key genes showed 
significantly higher expression levels in thyroid cancer 

Fig. 6  Gene Ontology enrichment of gene clusters involved in the turquoise module regarding biological process, cellular component, 
and molecular function. The colored dots represent term enrichment: green indicates low significance, red indicates high significance. The size 
of the dots represents the number of genes in each Gene Ontology term

Fig. 7  Kyoto Encyclopedia of Genes and Genomes pathways enrichment analysis of gene clusters involved in the turquoise module. The colored 
dots represent term enrichment: blue indicates low significance, red indicates high significance. The size of the dots represents the number 
of genes in each Kyoto Encyclopedia of Genes and Genomes pathway
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tissues than in normal thyroid tissues, which was also 
confirmed with GEO dataset. More importantly, of these 
5 genes, high FN1 and ITGA3 expression was negatively 
associated with DFS, indicating that FN1 and ITGA3 are 
considered poor prognostic indicators for PTC. Together, 
these findings indicate that 5 key genes could affect the 
ECM-receptor interaction and MAPK signaling pathway 
to promote PTC development.

The extracellular matrix (ECM) is a complex noncel-
lular unit that is composed of different extracellular gly-
coproteins. Matrix components can directly interact with 
cellular receptors to regulate the proliferation, adhesion, 
migration, differentiation and metastasis of cells. Recent 
studies have shown that ECM-receptor interaction path-
ways play a crucial role in promoting tumorigenesis and 
metastasis in thyroid cancer and other human cancers 
[13–16]. The genes involved in ECM–receptor inter-
action pathways are frequently deregulated in cancer 
patients. Through GO analysis, we found that the dif-
ferentially expressed genes were mainly enriched in the 
biological processes of extracellular structure organiza-
tion, extracellular matrix organization and cell − sub-
strate adhesion, indicating ECM-receptor interaction as 
a key pathway in thyroid carcinogenesis. FN1, a member 
of the glycoprotein family in the extracellular matrix, 
has been reported to regulate a variety of biological pro-
cesses, including cell adhesion, migration and cell move-
ment, in various malignant tumors. For example, a resent 

study reported that silencing FN1 inhibits YAP1/Hippo 
pathway activation by enhancing YAP1 phosphorylation, 
reduces aspartate uptake and utilization via SLC1A3, 
and suppresses breast cancer cell proliferation, inva-
sion, migration and promotes apoptosis [17]. Another 
report indicated that the high expression value of FN1 
was associated with significantly poor survival in pancre-
atic cancer [18]. Moreover, Jiang et al. reported that FN1 
was upregulated in papillary PTC and regulated thyroid 
cancer cell migration, invasion and EMT. Mechanisti-
cally, depletion of FN1 rescued the effects of miR-142-3p 
inhibitor on cell proliferation, invasion, apoptosis and 
EMT by inactivating the FAK/ERK/PI3K signaling path-
way [19]. Additionally, according to Nieto et al.’s research, 
FN1 was significantly upregulated in recurrent thyroid 
cancer and impacted cellular migration, highlighting it as 
a potential prognostic biomarker [20]. In agreement with 
the above, we found that FN1 was significantly upregu-
lated in PTC. FN1 was the LINC02454-coexpressed gene 
that is involved in the ECM − receptor interaction path-
way. More importantly, FN1 was also a significant pre-
dictor of DFS. Together, these findings indicate that FN1 
may act as a new candidate prognostic biomarker for 
PTC patients.

ITGA3, belonging to the integrin family, has been 
reported to interact with extracellular matrix proteins 
and promote tumor cell proliferation, migration and 
survival [21]. Huang et  al. noted that ITGA3, a critical 
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Fig. 9  The relative expression of 5 hub genes in thyroid cancer by GEPIA. A FN1. B LAMB3. C ITGA3. D SDC4. E IL1RAP. All 5 key genes were 
significantly upregulated in 512 PTC samples compared with 337normal thyroid samples. Red plots indicate tumor tissue and gray plots indicate 
normal tissue. *p < 0.01

Fig. 10  The relative expression of 5 hub genes in thyroid cancer in GSE150899. All 5 key genes were significantly upregulated in PTC samples 
compared with normal thyroid samples. Red indicates tumor tissue and blue indicates normal tissue. ****p < 0.0001
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integrin subunit, was upregulated in pancreatic cancer. 
High ITGA3 correlated with increased PD-L1, reduced 
CD8 + T cells, and unfavorable outcomes in patients 
receiving chemotherapy or immunotherapy [22]. In thy-
roid cancer, it has been reported that ITGA3 can govern 
PTC cell proliferation, invasion and migration and has 
been associated with recurrence and short survival [23, 
24]. Although some functions of ITGA3 in PTC have 
been reported, the potential mechanisms of ITGA3 in 
PTC are still unknown. Consistent with the findings 
in those cancer types, we found that ITGA3 was highly 
expressed in PTC tissue, and patients with high ITGA3 
expression showed a significantly poorer DFS. Through 
WGCNA and KEGG pathway analysis, we showed that 
ITGA3 was involved in the ECM–receptor interaction 
pathway associated with the poor prognosis of PTC 
patients.

Laminins are large extracellular glycoproteins com-
prised of three covalently linked chains (α, β, and γ) 
and are involved in several important biological pro-
cesses of cellular differentiation, migration, adhesion, 

proliferation, and survival. LAMB3 encodes one of the 
three subunits of LM-332, an extracellular matrix pro-
tein secreted by cultured human keratinocytes. A num-
ber of studies have revealed that LAMB3 is involved in 
cellular invasion and metastasis processes in several 
tumor types. For example, recent research by Zhang 
et  al. demonstrated that LAMB3 was overexpressed in 
cervical cancer and promoted cancer cell migration, 
invasion and survival via the PI3K-AKT pathway [25]. 
Other researchers found that a combined signature of 
high LAMA3, LAMB3, and LAMC2 expression was 
a stronger predictor of poor prognosis in pancreatic 
adenocarcinoma than individual genes [26]. In thyroid 
cancer, Jung et  al. found that LAMB3 was upregulated 
in PTC tissues and that loss of LAMB3 in PTC cells 
reduced cell migration and invasion via downregulation 
of epithelial‒mesenchymal transition-associated proteins 
and inhibition of matrix metalloproteinase 9 [27]. How-
ever, the detailed functions of LAMB3 in PTC are still 
unclear. In our study, mechanistic exploration revealed 
that LAMB3 was a LINC02454-coexpressed gene related 

Fig. 11  Prognostic value of 5 hub gene expression levels using GEPIA in thyroid cancer. A FN1. B LAMB3. C ITGA3. D SDC4. E IL1RAP. Patients 
with high expression of FN1 demonstrated significantly shorter DFS than those with low level of FN1 expression (P = 0.024). Patients with high 
expression of ITGA3 demonstrated significantly shorter DFS than those with low level of ITGA3 expression (P = 0.013). No significant association 
was observed between the other three hub genes and DFS. Survival curves were compared using log-rank test. DFS, disease-free survival
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to the ECM-receptor interaction pathway in thyroid 
carcinogenesis.

SDC4 is an important member of the family of trans-
membrane heparan sulfate proteoglycans, and plays 
a major role in the interactions between the extracel-
lular matrix and the cell surface [28]. Studies have indi-
cated that the function of SDC4 is highly associated with 
human tumorigenesis and development such as hepato-
cellular cancer, colorectal cancer, and ovarian cancer [29–
31]. To our knowledge, there are few reports about the 
function of SDC4 in the PTC. A study showed that SDC4 
gene silencing in PTC cells could suppress cell migration 
and invasion and promote cell apoptosis by inhibiting the 
activation of the Wnt/β -catenin signaling pathway [32]. 
These studies demonstrated that SDC4 could be consid-
ered as a tumor promoter in human cancers. However, 
studies on the precise molecular mechanisms study of 
SDC4 in PTC are still limited. In our study, SDC4 expres-
sion was significantly increased in PTC tissues. Addition-
ally, SDC4 might be coexpressed with LINC02454 and 
correlated with the ECM-receptor interaction pathway in 
PTC.

The MAPK signaling pathway plays a vital role in sev-
eral processes of tumorigenesis such as tumor cell pro-
liferation, migration, and invasion in various cancers 
including thyroid cancer. IL1RAP plays a crucial role in 
inflammation through the IL-1, IL-33, and IL-36 signal-
ing pathways. Importantly, IL1RAP is overexpressed on 
tumor cells across various cancers, supporting its poten-
tial involvement in carcinogenesis. Structurally, IL1RAP 
consists of an extracellular cytokine-binding domain and 
an intracellular signaling domain capable of activating 
inflammatory pathways like MAPK and NF-κB pathways 
[33]. Zhang et  al. noted that high IL1RAP expression 
in Ewing sarcoma may drive Ewing sarcoma progres-
sion by mediating local invasion and metastatic capacity 
[34]. Another recent study showed that IL1RAP overex-
pression was associated with worse overall survival in 
pancreatic cancer patients, which was attributed to its 
facilitation of tumor cell viability, invasiveness, and clo-
nogenic growth [35]. To date, there are few data about 
its role in thyroid cancer. Smallridge et  al. found that 
IL1RAP was upregulated in BRAF V600E PTC compared 
with BRAF wild-type patients via RNA sequencing analy-
sis [36]. However, there is currently no clear evidence 
of the detailed functions of IL1RAP in PTC. Our study 
showed that IL1RAP was highly expressed in thyroid 
cancer tissues compared with normal tissues. Moreover, 
IL1RAP seemed to be coexpressed with LINC02454 and 
activated the MAPK pathway in thyroid tumorigenesis.

In this work, we proposed a novel methodology to 
identify thyroid cancer related key genes, by integrating 

WGCNA, KEGG enrichment analysis and network anal-
ysis. The identified key genes were significantly differ-
entially expressed between tumor and normal samples, 
and they have been proved to be related to prognosis of 
thyroid cancer. This method can also be utilized to study 
other cancers. In previous articles, the analysis usually 
starts with differential expression analysis, and subse-
quent analysis is based on genes that show differential 
expression [37, 38]. However, our article starts with the 
identification module and then searches for modules 
closely related to clinical characteristics of thyroid cancer. 
Furthermore, we integrated three different bioinformat-
ics methods to screen out five key genes. Although these 
results indicate the underlying mechanism of action of 
LINC02454 in PTC, there are several limitations to our 
study. First, there are few functional studies of these can-
didate genes in PTC cells. Second, our study conducted 
the LINC02454 centered coexpression network analysis, 
but whether these candidate genes could be regarded as 
potential diagnostic and prognostic biomarkers may need 
further investigation. Third, the precise mechanism by 
which LINC02454 affects the ECM-receptor interaction 
and MAPK signaling remains poorly explored.

Conclusions
We conducted comprehensive bioinformatics analyses 
to investigate the LINC02454-related key pathways and 
coexpressed genes in PTC. The expression levels of 5 key 
genes (FN1, LAMB3, ITGA3, SDC4, and IL1RAP) were 
significantly upregulated in PTC tissues. In addition, FN1 
and ITGA3 were correlated with poor prognosis of PTC. 
Mechanistic exploration revealed that key genes could 
affect the ECM-receptor interaction and MAPK signaling 
pathway in PTC pathogenesis.
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