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Abstract

Thyroid cancer is one of the most common malignancies of the endocrine system with increasing incidence. The
vast majority of thyroid carcinomas derive from thyroid hormone producing follicular cells. Carcinomas of follicular
origin are classified as follicular (FTCs), papillary (PTCs), partially differentiated (PDTCs) or anaplastic (ATCs) thyroid
carcinomas. While FTCs and PTCs can be managed effectively, ATCs are considered one of the most lethal human
cancers. Despite the identification of various genetic alterations, pathogenic mechanisms promoting the
progression of thyroid carcinomas are still largely elusive. Over the recent years, aberrant microRNA expression was
revealed in all as yet analyzed human cancers, including thyroid carcinomas. In view of the rapidly evolving
perception that deregulated microRNA expression serves a pivotal role in tumor progression, microRNAs provide
powerful tools for the diagnosis of thyroid carcinomas as well as the identification of potential therapeutic targets.
Here, we summarize recent findings on microRNA signatures in thyroid carcinomas of follicular origin and discuss
how deregulated microRNA expression could promote cancer progression.

Introduction
Thyroid carcinomas represent the most common cancer
of the endocrine system [1]. More than 95% of these
carcinomas originate from follicular thyroid cells,
whereas only 3% are of C-cell origin, referred to as
medullary thyroid carcinomas (MTCs) [2]. The most
frequent follicular tumors are benign hyperplastic ade-
nomas (FTAs), whereas papillary thyroid carcinomas
(PTCs) are the most frequent thyroid carcinoma
(approximately 90%) [3]. PTCs are composed of well-
differentiated epithelial cells and can be distinguished by
visible changes in nuclear morphology and appearance
[4]. Follicular thyroid carcinomas (FTCs) with a preva-
lence of less than 10% are morphological similar to
FTAs but capable of vascular invasion [2]. Although
some of these well-differentiated carcinomas behave
aggressively, the vast majority of PTCs and FTCs can be
managed effectively. In contrast, the rare (2-7%) undif-
ferentiated, anaplastic thyroid carcinomas (ATCs)

behave very aggressively, rapidly invade adjacent tissues
and are thus considered one of the most lethal human
cancers [2]. At present there is no effective treatment of
ATCs and death usually occurs within six months after
diagnosis [5]. ATCs are characterized by partially or
completely undifferentiated cells with a high mitosis
rate, necrotic areas, spindle-like cell morphologies as
well as giant and occasionally squamous cells [5,6].
Poorly differentiated thyroid carcinomas (PDTCs) pre-
sent an ‘intermediate’ entity. They appear partially de-
differentiated compared to FTCs or PTCs and typically
behave more aggressively [5]. Several of these tumors
arise de novo, whereas others seem to originate from
PTCs or FTCs [7].
Thyroid tumors are supposed to be mainly monoclo-

nal malignancies arising based on somatic mutations of
progenitor cells. Putative risk factors for genomic
instabilities are radiation exposure, active oxygen-species
(H2O2 is necessary for thyroid hormone synthesis) and
estrogen. Historical events exhibit radiation exposure as
the major risk for PTCs, since atomic bomb survivors
and Chernobyl victims frequently developed these
tumors [8]. One of the major risks for FTCs is dietary
iodine deficiency resulting in thyroid proliferation
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(endemic goiter) as a compensatory mechanism [9].
Genetic predisposition associated thyroid cancers are
known for familial polyposis coli (mutations in APC),
Cowden disease (mutations in PTEN) and Werner syn-
drome (mutations in WRN) [2]. Moreover, two
sequence variants of loci 9q22.33 and 14q13.3 were
found to be associated with a higher risk of FTCs and
PTCs [10].
Genetic alterations in oncogenes that are involved in

the activation of cell signalling pathways have been
observed in the vast majority of malignant thyroid carci-
nomas. Mutation of the BRAF gene is most prominent
in PTCs with an appearance up to 50% [2,11,12]. One
major gain-of-function mutation of BRAF, a substitution
of valine to glutamate at position 600 (V600E), results
in constitutive activation of the MAPK pathway [13,14].
RAS gene (KRAS, HRAS, NRAS) mutations instead
were found in all thyroid cancers: FTAs (frequency: 20-
40%), FTCs (frequency: 40-50%), PDTCs (frequency: 20-
55%) and ATCs (frequency: 20-60%) [2,11,12]. Activa-
tion of the G-protein RAS stimulates MAPK and other
signalling pathways like PI3K/AKT. Less frequent are
RET rearrangements (20-40% in PTCs, ~10% in PDTCs)
due to inter-chromosomal translocations. In ATCs and
PDTCs, CTNNB1 (0-25% in PDTCs, 66% in ATCs) and
TP53 mutations (20-38% in PDTCs; 67-88% in ATCs)
were observed [2,11,12,15,16]. NTRK1 rearrangements
were exclusively identified in PTCs (~10%). The proto-
oncogene NTRK1 (also known as TRK) encodes a trans-
membrane tyrosine-kinase receptor for nerve growth
factor and activates ERK, PI3K and phospholipase g
(PLCg) signalling pathways. Notably, all mutations in
PTCs are nearly 100% exclusive. Rearrangements leading
to the chimeric protein PAX8-PPARg were only identi-
fied in FTCs (35%) and FTAs (2-10%) [2,3,11]. Addition-
ally, AKT signalling appears most accelerated in ATCs
and PTCs due to PTEN mutations and/or PIK3CA
amplification [17]. Together the frequency preference of
genetic alterations observed in distinct thyroid cancers
as well as the observation that well-differentiated thyroid
carcinomas precede or co-exist with PDTCs or ATCs
supports the view that most undifferentiated thyroid
carcinomas evolve by sequential progression (reviewed
in: [2]).
In addition to genetic alterations, recent studies indi-

cate that thyroid carcinomas like the majority of as yet
analyzed tumors are characterized by aberrant expres-
sion of microRNAs (miRNAs). These small, non-coding
RNAs of 20-24 nucleotides in length are evolutionarily
conserved and control gene expression at the post-tran-
scriptional level [18]. At present, 1366 mature human
microRNAs are listed in miR-Base (mirbase.org, release
16). The vast majority of identified and characterized
microRNAs target the 3’-untranslated region (3’ UTR)

of mRNAs and modulate target transcript degradation,
translation or both [19,20]. Two classes of microRNAs
relevant to cancer are distinguished: ‘onco-miRs’ with
tumor promoting effects versus ‘tumor-suppressive’
microRNAs that antagonize cancer progression. In the
past years, several studies identified miRNA signatures
in thyroid carcinomas aiming to reveal how they modu-
late thyroid cancer progression and to evaluate their
potential for thyroid cancer diagnosis.

MicroRNA signatures in follicular thyroid
carcinomas (FTCs)
Malignant FTCs and benign FTAs share significant simi-
larities at the morphological and molecular level and
thus microRNAs could serve as valuable markers to dis-
tinguish these tumors. The first study addressing this
aspect on the basis of a limited set of human micro-
RNAs (235 distinct human microRNAs) revealed four
microRNAs (miR-346, -328, -192, -197) moderately
upregulated by 1.34-1.82 fold in FTCs when compared
to FTAs [21]. The authors claimed this moderate upre-
gulation sufficed to distinguish FTAs from FTCs in 74%
of analyzed patient samples (23 FTCs, 20 FTAs). In
vitro, the upregulation of miR-197 and -346 was asso-
ciated with elevated proliferation of HEK293T and two
FTC-derived cell lines. This pro-proliferative effect was
suggested to correlate with miR-controlled expression of
ACVR1 (activin A receptor type 1), TSPAN3 (tetraspa-
nin 3), CFLAR (Caspase 8 and FADD-like apoptosis reg-
ulator) and EFEMP2 (fibulin 4), although no direct
regulation of these targets by miR-197 or -346 was
demonstrated [21]. The abundance of these mRNAs was
decreased in the majority of analyzed FTCs and was
proposed to distinguish FTAs from FTCs [21]. Notably,
previous studies suggested activin signalling to act on
growth inhibition of FTC-derived cells in vitro, but
miRNA-mediated regulation of Activin signalling
remains to be shown [22]. TSPAN3 was inversely corre-
lated with the metastatic potential in melanoma and the
extracellular matrix (ECM) component EFEMP2 was
reported to be over expressed in colon carcinomas but
decreased in prostate cancer [23-25].
In comprehensive studies aiming at the identification

of microRNA signatures distinguishing thyroid carcino-
mas from non-transformed thyroid tissue (NT), Nikifor-
ova and colleagues [26] could not confirm the results of
Weber et al. [21], except for miR-197. This miRNA
showed a higher expression in oncocytic FTCs com-
pared to NTs, whereas expression appeared largely unaf-
fected in conventional FTCs [21,26]. Notably, miR-328
expression, previously suggested being higher in FTCs
than in FTAs, was found to be upregulated in FTAs but
not in FTCs by Nikiforova et al [26]. The increased
expression of miR-221/-222 appears to be a hallmark of
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thyroid cancers of follicular origin, since both miRNAs
were found to be expressed at high levels in FTCs, PTCs,
PDTCs and ATCs [26-31] (Figure 1). Accordingly, their
expression was largely unaffected in FTAs, hyperplastic
nodules and medullary thyroid carcinomas (MTCs) [26].
Compared to non-transformed ‘normal’ thyroid (NT) and
hyperplastic nodules four additional miRNAs were signifi-
cantly increased in conventional FTCs (miR-187, -224,
-155, -146b) as well as in oncocytic FTCs (miR-187, -339,
-183, -197). MiR-187 is one of the ten most upregulated
microRNAs in PTCs, FTCs and PDTCs but apparently
remains unaffected in FTAs. This suggests miR-187 as a
useful marker for distinguishing FTCs from FTAs that
however is not suitable for discriminating FTCs from
other carcinomas of follicular origin. The only few studies
addressing miRNA signatures in FTCs focused exclusively
on the upregulation of microRNAs. However, by

comparing ATC samples with NTs, FTCs and PTCs, we
observed a significant reduction in miR-26a/-b and let-7g
expression in FTCs. These miRNAs are considered
tumor suppressive miRNAs [32-35].
In conclusion, comprehensive miRNA signature ana-

lyses in FTCs, in particular with respect to distinct sub-
types like oncocytic versus conventional FTCs, are still
lacking. Thus, it remains largely elusive if FTCs can be
distinguished from other thyroid carcinomas or FTAs by
altered miRNA expression profiles at this point.

MicroRNA signatures in papillary thyroid
carcinomas (PTCs)
The upregulation of the miR-221/-222 cluster and miR-
181 is the most consistent finding in all studies addressing
miRNA signatures in PTCs [26,27,31,36,37]. Moreover,
increased expression of miR-146b, -155, -21 and -220 was

Figure 1 Deregulated miRNA expression in thyroid carcinomas of follicular origin in comparison to normal thyroid tissue. Altered
expression of miRNAs observed by indicated studies is represented by color coding. Deregulated expression was classified as up- (red),
unaffected (grey) or downregulated (green) in comparison to non-transformed thyroid tissue based on individual studies. Contradictory data are
indicated by boxes. The presented data base on different thresholds, were quantified using distinct methods and more importantly distinct
miRNA sets. Thus, the presented summary of observed miRNA signatures remains incomplete, preliminary and requires substantial further
validation. This is particularly important for FTCs and PDTCs for both of which only a very limited set of microRNAs has been analyzed. FTC:
Follicular thyroid carcinoma; PTC: Papillary thyroid carcinoma; PDTC: Poorly differentiated thyroid carcinoma, ATC: Anaplastic thyroid carcinoma.
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reported in at least two individual studies based on com-
paring signatures between PTCs and NTs (Figure 1). A
comparison of PTCs to hyperplastic nodular tissue from
formalin fixed paraffin embedded samples further vali-
dated the significance of these findings by identifying
altered expression of miR-221/-222, -181, -31, and -224
[38]. Upregulation of miR-31 and -224 was also observed
by Nikiforova et al. [26]. However, analyses of 40 fine nee-
dle aspirate (FNA) specimen and 84 formalin-fixed paraf-
fin-embedded tissues by Chen et al. identified only the
upregulation of miR-146b and -222 as potent markers of
PTCs [39].
Most interestingly a significant correlation of

increased miRNA expression with genetic alterations
was observed in PTCs [26]. For instance, miR-221/-222
were more abundant in PTC samples with RAS and
BRAF mutations. RAS-mutations moreover correlated
with the most severe upregulation of miR-146b. In con-
trast, RET-mutations were found to be associated with
increased expression of miR-155. In vitro analyses using
thyroid cancer-derived cells confirmed an ‘oncogene
connection’ for upregulated expression of miR-221 and
-181b. The abundance of these microRNAs increased
upon overexpression of v-raf, v-ras, RET/PTC1, RET/
PTC3, E1-Abl, E1a-v-raf, middle T of polyomavirus and
v-mos [27]. PTC cell lines harboring RET/PTC1 or
BRAF V600E mutations identified additional microRNAs
to be severely increased. The most severe upregulation
upon BRAF mutation was observed for the miR-200
family (miR-200a, -200b, 200c and -141), whereas RET/
PTC1 rearrangement was correlated with upregulated
expression of miR-128a, -128b, -139 and -200a. The
most significantly downregulated group of miRNAs in
cells with BRAF mutation comprised miR-127, -130a,
and -144; with RET/PTC1 rearrangement miR-154*,
-181a, -302b and -302c [40,41].
Although there is substantial and consistent data on

the upregulation of microRNAs in PTCs, reduced abun-
dance was only reported for a few miRNAs. The three
tumor-suppressive miRNA-families miR-26 [31], -30
[38] and let-7 [27] were suggested to be expressed at
lower levels in PTCs. Our recent analyses confirmed
these observations for the miR-26 and let-7 families
[30]. However, expression of the miR-30 family
appeared largely unaffected when compared to NT. In
contrast, Schwertheim et al. identified an increased
expression of miR-30d, -30a, -26a and let-7c in nine
analyzed PTCs compared to NTs [36].
In summary, PTCs appear to be well-distinguishable

from NT by altered miRNA expression, in particular the
upregulation of onco-miRs. However, more comprehen-
sive analyses including FTCs are required to identify
miRNAs expressed at distinct levels in these two carci-
noma types.

MicroRNA signatures in anaplastic thyroid
carcinomas (ATCs)
The most striking difference between ATCs and all
other thyroid carcinomas of follicular origin appears to
be a severely decreased expression of various miRNAs
(Figure 1) [28,30,36]. Visone et al. observed decreased
expression of 20 and elevated abundance of only four
miRNAs (miR-222, -198, -let-7f-1, let-7a-2) by compar-
ing ATCs with non-transformed thyroid tissue [28]. The
most significant decrease in expression was determined
for miR-30d, -125b-1/2, and -26a which could be con-
firmed by Schwertheim et al [36]. In support of these
findings, we identified 62 down- and 21 upregulated
miRNAs compared to non-transformed thyroid [30].
Strikingly, the decreased miRNAs comprised 12
miRNA-families and 12 clustered miRNA transcription
units. The most significant downregulation was observed
for tumor suppressive miRNAs of the let-7, miR-26, -30
and -200 families. Notably, the comparison of miRNA
signatures between ATCs, PTCs and FTCs suggested
that downregulation of the miR-30 and -200 families is
sufficient to unambiguously distinguish ATCs from NT
as well as FTCs and PTCs. As observed for PTCs, the
miR-138 was found to be severely reduced in ATC sam-
ples as well as in ATC-derived cell lines [30,31,42,43].
Consistent with our studies and the analyses of ATC-
derived cells, Nikiforova and colleagues observed a
severe upregulation of miR-221/-222 [26,43]. Allthough
they examined the expression of 158 microRNAs and
identified 57 down- and 47 upregulated in the majority
of thyroid tumors they only analyzed the ten most upre-
gulated microRNAs in further detail. Finally, the potent
onco-miR-21 was found to be highly expressed in ATCs
and was observed to promote thyroid tumor growth in
mouse [30,44].
In conclusion, ATCs appear to be well-distinguishable

from all other thyroid carcinomas by a severe decrease
in the expression of various microRNAs. However,
future studies have to reveal if altered miRNA profiles
suffice to unambiguously distinguish ATCs from
PDTCs.

MicroRNA signatures in poorly differentiated
thyroid carcinomas (PDTCs)
PDTCs are poorly defined and show morphological
characteristics of both, differentiated and anaplastic
thyroid carcinomas. Aiming to distinguish PDTCs from
PTCs and ATCs on the molecular level, Schwertheim et
al. investigated the expression of two different sets of
microRNAs (‘set 1’: miRNA-146b, -181b, -21, -221 and
-222, all upregulated in PTCs; ‘set 2’: miRNA-30d,
-125b, -26a, -30a-5p and let7d, all downregulated in
ATC). Abundance of these miRNAs was analyzed in
comparison to four NTs in 15 PDTCs, nine PTCs and
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nine ATCs [36]. ‘Set 1’ microRNA expression was
slightly increased in PDTCs but did not significantly dif-
fer from NTs. Since PTCs and ATCs instead showed a
more robust upregulation of these microRNAs, the
authors suggested ‘set 1’ microRNAs as a promising
diagnostic tool to distinguish PDTCs from PTCs or
ATCs. MicroRNAs of ‘set 2’ instead appear useful to
discriminate PDTCs from PTCs, since they were
expressed at low levels in PDTCs and ATCs but signifi-
cantly upregulated in PTCs. Nikiforova et al. investi-
gated the microRNA expression of four PDTCs but did
not aim to distinguish PDTCs from PTCs or ATCs [26].
In contrast to Schwertheim et al., Nikiforova and collea-
gues found miR-181b, -221, -222 and -146b to be upre-
gulated in all four analyzed PDTCs when compared to
NTs [26].
Although preliminary evidence indicates that miRNA

profiles could be useful molecular markers to identify

PDTCs, additional and more comprehensive studies are
required.

Onco-miRs in Thyroid cancer
Onco-miRs are typically classified by an upregulation in
cancer and the targeting of transcripts encoding effec-
tors antagonizing tumor progression (Figure 2, red). In
the following we discuss validated and suggested pheno-
typic consequences of aberrant onco-miR expression
observed in thyroid cancer.

miR-221/-222
The overexpression of miR-221/-222 is a hallmark of
thyroid malignancies [26-28,30,31]. Moreover, upregu-
lation of both miRNAs was also shown in hepatocellu-
lar carcinomas (HCC), glioblastoma and gastric cancer
[45-47]. Antagonizing the function of miRs-221/222 in
PTC-derived cells interfered with cell proliferation and

Figure 2 Regulatory networks facilitated by tumor-suppressive and onco-genic microRNAs / proteins in tumor cells. Dashed lines
indicate indirect regulation.
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growth [27]. In subsequent studies it was demonstrated
that both miRNAs negatively regulate expression of the
cyclin-dependent kinase (CDK) inhibitor p27Kip1[29].
This inhibitory role most likely involves miR-221/222
directed control of FOXO3, a key transcriptional acti-
vator of p27Kip1[48,49]. Notably, FOXO3a mRNA was
significantly downregulated in PTCs and FOXO3a
represses onco-miR-21 in lung cancer cells [49,50]. An
inhibitory role of both miRNAs was also observed for
p57Kip2 expression [47,51]. Hence, elevated expression
of miR-221/-222 presumably indicates aberrant prolif-
eration and cell growth due to their role in antagoniz-
ing cell cycle arrest by targeting crucial cell cycle
gatekeepers like CDK-inhibitors. Supporting this view,
reduced expression of p27Kip1 was observed in many
primary thyroid tumors as well as thyroid carcinoma-
derived cell lines [52].
The expression of the c-kit tyrosine kinase receptor

is suppressed or reduced in most tested FTCs and
PTCs [53]. Indicating a role of miR-221/-222 in this
regulation, it was demonstrated that both miRNAs tar-
get c-kit in melanoma-derived cells [54]. Interestingly,
70% of cutaneous melanomas are characterized by
BRAF mutations which was also shown to be a precau-
tion of miR-221/-222 upregulation in PTC [26]. Var-
ious studies showed that miR-221/-222 downregulate
expression of the tumor-suppressive phosphatase
PTEN leading to an upregulation of PI3K/AKT signal-
ing [55,56]. This pathway blocks apoptosis and pro-
motes invasion by modulating focal adhesion kinase
(FAK) phosphorylation and matrix metalloprotease
(MMP) expression levels [57]. PIK3CA amplifications
as well as PTEN mutations were reported for many
FTCs, PTCs and ATCs suggesting that AKT signaling
is sustained by genomic alterations and modified by
post-transcriptional control in thyroid carcinomas
[17,58,59]. Another pro-apoptotic factor and inhibitor
of MMP expression regulated by miR-221/-222 is
TIMP3. Reduced expression of PTEN and TIMP3
facilitated by this miRNA-cluster induces TRAIL
(tumor necrosis factor (TNF)-related apoptosis indu-
cing ligand) resistance and upregulation of MMPs [55].
In vivo evidence for the growth promoting role of
elevated miR-221/-222 expression was provided by
Xenograft studies in nude mice. The constitutive over-
expression of this miRNA cluster resulted in an
increased gain of Xenograft weight and volume upon
subcutaneous injection of tumor-derived cell lines [47].
Together these findings indicate the overexpression of
miR-221/-222 as a key event in thyroid tumor progres-
sion. Upregulation of both miRNAs presumably pro-
motes uncontrolled growth and could as well modulate
the invasive potential of tumor cell.

miR-21
Upregulated expression of miR-21 is observed in multi-
ple types of cancers, such as breast, liver, brain, prostate
and myometrial cancers but also in PTCs and ATCs
[44,60,61]. Most recently it was shown that oncogenic
Ras induces miR-21 expression via activating Raf/MAPK
and AKT signaling in rat thyroid cells and in a mouse
model of lung tumorigenesis [44]. MiR-21 predomi-
nantly acts in an anti-apoptotic manner by interfering
with the expression of PTEN and PDCD4 [62-64]. Thus,
this miRNA promotes AKT signaling similar to the
miR-221/-222 cluster and thereby stimulates its own
expression. Elevated AKT signaling and the direct regu-
lation of tropomyosin 1 (TPM1) and maspin (PI5)
affects cell morphology, motility and enhances cell inva-
sion [65,66]. By the direct targeting of RECK and the
indirect effect on TIMP3 expression, upregulation of
miR-21 promotes cell migration and invasiveness but
also blocks apoptosis [67]. Hence, the overexpression of
miR-21 in thyroid cancers is likely to promote uncon-
trolled growth and potentially upregulated invasiveness
of tumor cells.

miR-155
MiR-155 overexpression was observed in FTCs, PTCs
and ATCs [26,31]. In leukemia, miR-155 together with
miR-21 stimulates PI3K/AKT signaling by blocking
expression of SHIP1, another AKT inhibitory phospha-
tase [68,69]. In addition miR-155 interferes with the
expression of RhoA and serves a role in modulating
tumor cell invasion as well as epithelial-to-mesenchy-
mal-transition (EMT) [70]. TGFb induces miR-155
expression and thereby promotes TGFb-induced EMT
and tight junction dissolution involving the depletion of
RhoA. Like miR-221/-222, miR-155 also directly targets
FOXO3a [71]. Hence, upregulation of miR-155 in thyr-
oid cancers is presumed to promote cell survival, inva-
siveness and resistance to chemotherapeutics, as for
instance demonstrated in breast cancer cells [71].

Tumor-suppressive miRNAs in thyroid cancer
In contrast to onco-miRs, tumor-suppressive micro-
RNAs are typically downregulated during tumor pro-
gression and target transcripts encoding oncogenic
factors. The regulatory role of key tumor-suppressive
miRNAs in thyroid cancer is discussed in the following
(Figure 2, green).

miR-200
The miR-200 family (comprising miR-141, -200a, -200b,
- 200c and -429) was identified as a potent suppressor
of EMT [72-75]. Reduced expression of this miRNA-
family was previously reported for stomach, breast and
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ovarian cancers [76]. Surprisingly, moderately upregu-
lated expression of some miR-200 family members was
observed in PTCs and FTCs, whereas a severe downre-
gulation of this microRNA family was found in all
ATCs analyzed [30]. This observation supports the view
that the miR-200 family serves a key role in preserving
an epithelial phenotype or morphology, respectively. Ele-
vated levels of the miR-200 family interfere with the
expression of EMT-promoting factors like ZEB1, ZEB2,
SNAI2, SMAD2, TGFbR1 and TGFb2. This antagonizes
transcriptional repression of E-cadherin and the miR-
200 genomic clusters (miR-141/-200c and miR-200a/-
200b/-429) [30,72-74]. In agreement, severely reduced
E-cadherin levels have been described as a common
characteristic of primary ATCs as well as ATC-derived
cells [30,77]. Moreover, elevated expression of TGFb2
was observed in ATC and PDTC compared to FTC and
PTC samples [78]. Beyond the antagonistic role in
TGFb-induced EMT, the miR-200 family presumably
also modulates actin dynamics by interfering with the
expression of WAVE3, an actin cytoskeleton remodeling
protein [79]. Taken together, this provides strong evi-
dence that the loss of miR-200 expression presents a
hallmark in the progression of thyroid carcinomas cul-
minating in TGFb-dependent EMT and elevated inva-
siveness, as observed for ATCs [30]. The loss of miR-
200 expression is probably potentiated by TGFb-
mediated upregulation of miR-155 expression and
enhancement of miR-21-maturation, for both of which a
pro-metastatic function was proposed [70,80]. More
recently, regulation of LIN28B by miR-200 members
was identified in prostate cancer-derived cells [81].
LIN28 is a stem cell factor and a powerful inducer of
pluripotency [82]. It also represses maturation of the
tumor-suppressive let-7 family by binding to the loop
region of let-7 precursors [83-85]. Additionally, the
miR-200 family apparently promotes apoptosis, as
demonstrated in colorectal cancer-derived HCT116
cells. In these cells the repression of FAP1 (Fas-asso-
ciated phosphatase 1) by the miR-200 family was corre-
lated with elevated susceptibility to TNF-receptor
CD95-dependent apoptosis [86]. In summary, these
findings indicate reduced expression of the miR-200
family as a key trigger for dedifferentiation and poten-
tiated aggressiveness observed in ATCs.

let-7
Downregulation of the let-7 family is observed in all
thyroid carcinomas of follicular origin [27,28,30]. Let-7
was initially identified as a factor promoting differentia-
tion in C. elegans and was since then validated as a key
regulator of gene expression in various organisms
[87,88]. The let-7 family is ubiquitously expressed in
adult mouse tissue and its reduced expression is

considered to be a hallmark in cancer progression [89].
In accord with their tumor-suppressive role, members of
the let-7 family target cell cycle regulators and onco-
genes like RAS, HMGA1/2, MYC, IGF2BP1 and LIN28
[34,89-93]. Thus it appears likely that the capability to
antagonize activating RAS mutations and thus uncon-
trolled proliferation is severely compromised by reduced
levels of the let-7 family. Like activating RAS mutations,
the overexpression of MYC is associated with enhanced
cell growth and reduced serum dependency in various
malignancies [94]. Accordingly, the frequently observed
increase of MYC levels in ATCs is likely to correlate
with a downregulation of the let-7 family [78,95,96].
Notably, MYC is a key regulator of miRNA transcription
and negatively controls expression of various tumor-
suppressive miRNA clusters including once again the
let-7 family but in addition the miR-30, -26, -34 and -29
families [97,98]. Another layer of post-transcriptional
regulation is provided by the control of MYC mRNA
degradation via the RNA binding protein IGF2BP1
(Insulin-like growth factor 2 mRNA binding protein 1)
[99]. IGF2BP1 shows an oncofetal expression pattern
and becomes de novo synthesized in various cancers
[100]. This is in agreement with a reduction of let-7
expression, since members of this miRNA family inter-
fere with IGF2BP1 expression. Thus, MYC-directed
repression of the let-7 family is likely to promote the
expression of IGF2BP1 that in turn sustains MYC
expression [97]. HMGA1 and HMGA2, two other key
factors in tumor progression that are controlled by the
let-7 family, support the RAS/MEK-facilitated induction
of EMT by enhancing SNAIL expression [101-103].
Moreover, HMGA proteins promote cell growth and
HMGA1 depletion induces programmed cells death in
ATC-derived cells [104]. In conclusion, loss of the let-7
family is likely to be an early event in the progression of
thyroid carcinomas. The sever reduction of this tumor-
suppressive miRNA family promotes uncontrolled
tumor growth and presumably also affects the invasive
potential of tumor cells at later stages.

miR-30
Significantly reduced expression of the miR-30 family
was identified in ATCs. However, moderately reduced
expression is also observed in FTCs, PTCs and PDTCs,
with the exception of miR-30b in FTCs [28,30]. The
first hint of a potential tumor-suppressive role of this
miRNA family was revealed by the identification of
UBC9 as a direct target [105]. Downregulation of this
E2-conjugating enzyme for sumoylation interferes with
cell growth and cancer progression. In bladder cancer,
reduced expression of the miR-30 family was associated
with upregulation of the tumor marker cytokeratin 7,
although a functional role of this potential regulation
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remains elusive [106]. We identified the miR-30 family
as an antagonist of TGFb-induced EMT and in vitro
invasiveness of ATC-derived cells [30]. This role appar-
ently involves the direct targeting of SMAD2 and ZEB2.
In agreement, the forced expression of miR-30 family
members interfered with in vitro invasiveness of ATC-
derived cells and correlated with a downregulation of
the mesenchymal marker vimentin. However, in contrast
to the miR-200 family, expression of the miR-30 family
is apparently controlled in a ZEB-independent manner
[30]. Intriguingly, the miR-30 family also targets the
stem cell factor LIN28, as previously demonstrated for
other key tumor-suppressive miRNA families like miR-
200 and let-7 [107]. Hence, the identification of deregu-
lated expression of the miR-30 family in ATCs identified
yet another tumor-suppressive miRNA cluster modulat-
ing EMT and invasiveness of tumor cells.

Conclusions
The comprehensive view of distinct miRNA signatures
in thyroid carcinomas of follicular origin provides novel
insights in the molecular pathologies of these malignan-
cies. However, knowledge of target mRNAs controlled
by deregulated miRNAs in thyroid cancers is still sparse
at present. To reveal how altered expression of micro-
RNAs promotes or antagonizes thyroid tumor progres-
sion it is thus required to identify novel miRNA targets
in future studies.
In thyroid carcinomas the most striking observation is

that ‘less’ aggressive FTCs and PTCs (compared to
ATCs) are apparently characterized by an upregulation
of ‘oncogenic’ miRNAs (e.g. miR-221/-222 or miR-
146b). These miRNAs mainly act in a pro-proliferative
and anti-apoptotic manner. In accord with the clonal
progression hypothesis, ATCs reveal a severe reduction
of tumor-suppressive miRNAs (Figure 1). This decrease
presumably promotes dedifferentiation, which morpho-
logically manifests as an epithelial-to-mesenchymal-tran-
sition (EMT) driven by reduced expression of the miR-
200 and -30 families (see Fig. 1 in [30].). Notably, reduc-
tion of these miRNA families is likely to provide a valu-
able diagnostic tool for distinguishing ATCs from FTC
or PTCs. Unresolved aspects of immediate diagnostic
and potentially therapeutic importance address the
question if miRNA signatures are suitable to distinguish
FTAs from FTCs. The presented studies seem to be
insufficient to define a subset of microRNAs that unam-
biguously discriminates these thyroid cancers. Thus, it is
required to re-evaluate miRNA signatures in thyroid
cancers of follicular origin in a comprehensive manner
based on pathologically unambiguously classified
primary samples. These studies need to be based on
the same evaluation method, for instance miRNA-

microarrays, to generate data sets allowing an unbiased
direct comparison of miRNA signatures.
Despite their potential as diagnostic tools, miRNAs

could also provide promising therapeutic targets based
on onco-miR inhibition or restoring levels of tumor sup-
pressive miRNAs. The stage for such approaches was set
in rodents already in 2005 by demonstrating that the
role of miR-16 as well as -122 could be antagonized by
the intravenous injection of anti-miRs [108]. Vice versa,
the adenoviral delivery of the tumor-suppressive miR-26
was shown to suppress mouse liver tumorigenesis [33].
However, in clinical practice the specificity of miRNA or
anti-miR delivery remains an essential limitation due to
off-site effects in non-neoplastic organs.
A third strategy could be envisioned on the level of

epigenetic silencing of tumor-suppressive miRNAs. In
breast and prostate cancer cell lines methylation of the
miR-200 cluster was observed and inhibition of methyl-
transferases released this transcription block [109].
Moreover, epigenetic silencing might explain the obser-
vation that complete miRNA transcription units are
downregulated in ATCs (Table1 in [30]). Hence, spa-
tially restricted and cluster specific release of epigenetic
silencing could provide a valuable tool in the treatment
of cancer but as yet such approaches are not available.
In conclusion the here reviewed findings reveal the

potency and current limitations of miRNAs in diagnosis,
prognosis and potentially therapeutic strategies for the
treatment of thyroid cancer. However, substantial addi-
tional work will be required to establish miRNAs in
clinical practice and reveal the molecular networks via
which altered miRNA expression promotes thyroid can-
cer progression.
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